| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1ass23l.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1ass23l.t | ⊢  ×   =  ( .r ‘ 𝑃 ) | 
						
							| 3 |  | ply1ass23l.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | ply1ass23l.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | ply1ass23l.n | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 7 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  1o  ∈  On ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 11 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 12 | 1 11 2 | ply1mulr | ⊢  ×   =  ( .r ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 13 | 11 6 12 | mplmulr | ⊢  ×   =  ( .r ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( 1o  mPwSer  𝑅 ) )  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( 1o  mPoly  𝑅 ) )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 16 | 11 6 15 14 | mplbasss | ⊢ ( Base ‘ ( 1o  mPoly  𝑅 ) )  ⊆  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 17 | 1 3 | ply1bascl2 | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 18 | 16 17 | sselid | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 21 | 1 3 | ply1bascl2 | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 22 | 16 21 | sselid | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 25 | 1 11 5 | ply1vsca | ⊢  ·   =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 26 | 11 6 25 | mplvsca2 | ⊢  ·   =  (  ·𝑠  ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 27 |  | simpr1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐴  ∈  𝐾 ) | 
						
							| 28 | 6 8 9 10 13 14 20 24 4 26 27 | psrass23l | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝐴  ·  𝑋 )  ×  𝑌 )  =  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) ) ) |