| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1val.1 | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | eqid | ⊢ ( PwSer1 ‘ 𝑅 )  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 5 | 1 3 4 | ply1subrg | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 7 | 1 3 4 | ply1lss | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 9 | 3 | psr1assa | ⊢ ( 𝑅  ∈  CRing  →  ( PwSer1 ‘ 𝑅 )  ∈  AssAlg ) | 
						
							| 10 |  | eqid | ⊢ ( 1r ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 11 | 10 | subrg1cl | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) )  →  ( 1r ‘ ( PwSer1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( 1r ‘ ( PwSer1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 14 | 13 | subrgss | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) )  →  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 16 | 1 3 | ply1val | ⊢ 𝑃  =  ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 17 | 1 4 | ply1bas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 18 | 17 | oveq2i | ⊢ ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ 𝑃 ) )  =  ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 19 | 16 18 | eqtr4i | ⊢ 𝑃  =  ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ 𝑃 ) ) | 
						
							| 20 |  | eqid | ⊢ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 21 | 19 20 13 10 | issubassa | ⊢ ( ( ( PwSer1 ‘ 𝑅 )  ∈  AssAlg  ∧  ( 1r ‘ ( PwSer1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 )  ∧  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) )  →  ( 𝑃  ∈  AssAlg  ↔  ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) )  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 22 | 9 12 15 21 | syl3anc | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑃  ∈  AssAlg  ↔  ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) )  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 23 | 6 8 22 | mpbir2and | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  AssAlg ) |