Metamath Proof Explorer


Theorem ply1bas

Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1 𝑃 = ( Poly1𝑅 )
ply1val.2 𝑆 = ( PwSer1𝑅 )
ply1bas.u 𝑈 = ( Base ‘ 𝑃 )
Assertion ply1bas 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ply1val.1 𝑃 = ( Poly1𝑅 )
2 ply1val.2 𝑆 = ( PwSer1𝑅 )
3 ply1bas.u 𝑈 = ( Base ‘ 𝑃 )
4 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
5 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
6 eqid ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 2 7 5 psr1bas2 ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPwSer 𝑅 ) )
9 4 5 6 8 mplbasss ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ 𝑆 )
10 1 2 ply1val 𝑃 = ( 𝑆s ( Base ‘ ( 1o mPoly 𝑅 ) ) )
11 10 7 ressbas2 ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ 𝑆 ) → ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ 𝑃 ) )
12 9 11 ax-mp ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ 𝑃 )
13 3 12 eqtr4i 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) )