Metamath Proof Explorer


Theorem ply1bascl2

Description: A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p 𝑃 = ( Poly1𝑅 )
ply1bascl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1bascl2 ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 ply1bascl.p 𝑃 = ( Poly1𝑅 )
2 ply1bascl.b 𝐵 = ( Base ‘ 𝑃 )
3 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
4 1 3 2 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
5 4 eleq2i ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
6 5 biimpi ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )