Step |
Hyp |
Ref |
Expression |
1 |
|
fvi |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) |
2 |
1
|
eqcomd |
⊢ ( 𝑅 ∈ V → 𝑅 = ( I ‘ 𝑅 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) ) |
5 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
6 |
|
00ply1bas |
⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
7 |
5 6
|
eqtr3i |
⊢ ( Base ‘ ∅ ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) |
9 |
8
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ∅ ) ) |
10 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) |
11 |
10
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ ( I ‘ 𝑅 ) ) = ( Poly1 ‘ ∅ ) ) |
12 |
11
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) ) |
13 |
7 9 12
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) ) |
14 |
4 13
|
pm2.61i |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |