Metamath Proof Explorer


Theorem ply1coe

Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 7-Oct-2019)

Ref Expression
Hypotheses ply1coe.p 𝑃 = ( Poly1𝑅 )
ply1coe.x 𝑋 = ( var1𝑅 )
ply1coe.b 𝐵 = ( Base ‘ 𝑃 )
ply1coe.n · = ( ·𝑠𝑃 )
ply1coe.m 𝑀 = ( mulGrp ‘ 𝑃 )
ply1coe.e = ( .g𝑀 )
ply1coe.a 𝐴 = ( coe1𝐾 )
Assertion ply1coe ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ply1coe.p 𝑃 = ( Poly1𝑅 )
2 ply1coe.x 𝑋 = ( var1𝑅 )
3 ply1coe.b 𝐵 = ( Base ‘ 𝑃 )
4 ply1coe.n · = ( ·𝑠𝑃 )
5 ply1coe.m 𝑀 = ( mulGrp ‘ 𝑃 )
6 ply1coe.e = ( .g𝑀 )
7 ply1coe.a 𝐴 = ( coe1𝐾 )
8 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
9 psr1baslem ( ℕ0m 1o ) = { 𝑑 ∈ ( ℕ0m 1o ) ∣ ( 𝑑 “ ℕ ) ∈ Fin }
10 eqid ( 0g𝑅 ) = ( 0g𝑅 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 1onn 1o ∈ ω
13 12 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 1o ∈ ω )
14 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
15 1 14 3 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
16 1 8 4 ply1vsca · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) )
17 simpl ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝑅 ∈ Ring )
18 simpr ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐾𝐵 )
19 8 9 10 11 13 15 16 17 18 mplcoe1 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐾 = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐾𝑎 ) · ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ) )
20 7 fvcoe1 ( ( 𝐾𝐵𝑎 ∈ ( ℕ0m 1o ) ) → ( 𝐾𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) )
21 20 adantll ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( 𝐾𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) )
22 12 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → 1o ∈ ω )
23 eqid ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) )
24 eqid ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) )
25 eqid ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 )
26 simpll ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → 𝑅 ∈ Ring )
27 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → 𝑎 ∈ ( ℕ0m 1o ) )
28 eqidd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) )
29 0ex ∅ ∈ V
30 fveq2 ( 𝑏 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) )
31 30 oveq1d ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) )
32 30 oveq2d ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) )
33 31 32 eqeq12d ( 𝑏 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) )
34 29 33 ralsn ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) )
35 28 34 sylibr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
36 fveq2 ( 𝑥 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) )
37 36 oveq2d ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) )
38 36 oveq1d ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
39 37 38 eqeq12d ( 𝑥 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) )
40 39 ralbidv ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) )
41 29 40 ralsn ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
42 35 41 sylibr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
43 df1o2 1o = { ∅ }
44 43 raleqi ( ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
45 43 44 raleqbii ( ∀ 𝑥 ∈ 1o𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
46 42 45 sylibr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ∀ 𝑥 ∈ 1o𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) )
47 8 9 10 11 22 23 24 25 26 27 46 mplcoe5 ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) )
48 43 mpteq1i ( 𝑐 ∈ 1o ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) = ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) )
49 48 oveq2i ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) )
50 8 mplring ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ Ring )
51 12 50 mpan ( 𝑅 ∈ Ring → ( 1o mPoly 𝑅 ) ∈ Ring )
52 23 ringmgp ( ( 1o mPoly 𝑅 ) ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd )
53 51 52 syl ( 𝑅 ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd )
54 53 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd )
55 29 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ∅ ∈ V )
56 23 15 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) )
57 56 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) )
58 5 3 mgpbas 𝐵 = ( Base ‘ 𝑀 )
59 58 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐵 = ( Base ‘ 𝑀 ) )
60 ssv 𝐵 ⊆ V
61 60 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐵 ⊆ V )
62 ovexd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) ∈ V )
63 eqid ( .r𝑃 ) = ( .r𝑃 )
64 1 8 63 ply1mulr ( .r𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) )
65 23 64 mgpplusg ( .r𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) )
66 5 63 mgpplusg ( .r𝑃 ) = ( +g𝑀 )
67 65 66 eqtr3i ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( +g𝑀 )
68 67 oveqi ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g𝑀 ) 𝑏 )
69 68 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g𝑀 ) 𝑏 ) )
70 24 6 57 59 61 62 69 mulgpropd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = )
71 70 oveqd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) 𝑋 ) )
72 71 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) 𝑋 ) )
73 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
74 5 ringmgp ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd )
75 73 74 syl ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
76 75 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → 𝑀 ∈ Mnd )
77 elmapi ( 𝑎 ∈ ( ℕ0m 1o ) → 𝑎 : 1o ⟶ ℕ0 )
78 0lt1o ∅ ∈ 1o
79 ffvelrn ( ( 𝑎 : 1o ⟶ ℕ0 ∧ ∅ ∈ 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 )
80 77 78 79 sylancl ( 𝑎 ∈ ( ℕ0m 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 )
81 80 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 )
82 2 1 3 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
83 82 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → 𝑋𝐵 )
84 58 6 mulgnn0cl ( ( 𝑀 ∈ Mnd ∧ ( 𝑎 ‘ ∅ ) ∈ ℕ0𝑋𝐵 ) → ( ( 𝑎 ‘ ∅ ) 𝑋 ) ∈ 𝐵 )
85 76 81 83 84 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( 𝑎 ‘ ∅ ) 𝑋 ) ∈ 𝐵 )
86 72 85 eqeltrd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 )
87 fveq2 ( 𝑐 = ∅ → ( 𝑎𝑐 ) = ( 𝑎 ‘ ∅ ) )
88 fveq2 ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) )
89 2 vr1val 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ )
90 88 89 eqtr4di ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = 𝑋 )
91 87 90 oveq12d ( 𝑐 = ∅ → ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) )
92 56 91 gsumsn ( ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ∧ ∅ ∈ V ∧ ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) )
93 54 55 86 92 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) )
94 49 93 eqtrid ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) )
95 47 94 72 3eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( ( 𝑎 ‘ ∅ ) 𝑋 ) )
96 21 95 oveq12d ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑎 ∈ ( ℕ0m 1o ) ) → ( ( 𝐾𝑎 ) · ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) )
97 96 mpteq2dva ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐾𝑎 ) · ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) = ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) ) )
98 97 oveq2d ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐾𝑎 ) · ( 𝑏 ∈ ( ℕ0m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) ) ) )
99 nn0ex 0 ∈ V
100 99 mptex ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ∈ V
101 100 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ∈ V )
102 1 fvexi 𝑃 ∈ V
103 102 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝑃 ∈ V )
104 ovexd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 1o mPoly 𝑅 ) ∈ V )
105 3 15 eqtr3i ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
106 105 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) )
107 eqid ( +g𝑃 ) = ( +g𝑃 )
108 1 8 107 ply1plusg ( +g𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) )
109 108 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( +g𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) )
110 101 103 104 106 109 gsumpropd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) )
111 eqid ( 0g𝑃 ) = ( 0g𝑃 )
112 8 1 111 ply1mpl0 ( 0g𝑃 ) = ( 0g ‘ ( 1o mPoly 𝑅 ) )
113 8 mpllmod ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ LMod )
114 12 17 113 sylancr ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 1o mPoly 𝑅 ) ∈ LMod )
115 lmodcmn ( ( 1o mPoly 𝑅 ) ∈ LMod → ( 1o mPoly 𝑅 ) ∈ CMnd )
116 114 115 syl ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 1o mPoly 𝑅 ) ∈ CMnd )
117 99 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ℕ0 ∈ V )
118 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
119 118 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod )
120 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
121 7 3 1 120 coe1f ( 𝐾𝐵𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
122 121 adantl ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
123 122 ffvelrnda ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ( Base ‘ 𝑅 ) )
124 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
125 124 eqcomd ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 )
126 125 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑃 ) = 𝑅 )
127 126 fveq2d ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) )
128 123 127 eleqtrrd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
129 75 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ Mnd )
130 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
131 82 ad2antrr ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋𝐵 )
132 58 6 mulgnn0cl ( ( 𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵 ) → ( 𝑘 𝑋 ) ∈ 𝐵 )
133 129 130 131 132 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝑋 ) ∈ 𝐵 )
134 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
135 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
136 3 134 4 135 lmodvscl ( ( 𝑃 ∈ LMod ∧ ( 𝐴𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 𝑋 ) ∈ 𝐵 ) → ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ∈ 𝐵 )
137 119 128 133 136 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ∈ 𝐵 )
138 137 fmpttd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) : ℕ0𝐵 )
139 1 2 3 4 5 6 7 ply1coefsupp ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) finSupp ( 0g𝑃 ) )
140 eqid ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) )
141 43 99 29 140 mapsnf1o2 ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0m 1o ) –1-1-onto→ ℕ0
142 141 a1i ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0m 1o ) –1-1-onto→ ℕ0 )
143 15 112 116 117 138 139 142 gsumf1o ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) )
144 eqidd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) )
145 eqidd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) )
146 fveq2 ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝐴𝑘 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) )
147 oveq1 ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝑘 𝑋 ) = ( ( 𝑎 ‘ ∅ ) 𝑋 ) )
148 146 147 oveq12d ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) )
149 81 144 145 148 fmptco ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) = ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) ) )
150 149 oveq2d ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) ) ) )
151 110 143 150 3eqtrrd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) )
152 19 98 151 3eqtrd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑋 ) ) ) ) )