Step |
Hyp |
Ref |
Expression |
1 |
|
ply1coe.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1coe.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
ply1coe.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
ply1coe.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
ply1coe.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
6 |
|
ply1coe.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
7 |
|
ply1coe.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
9 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑑 “ ℕ ) ∈ Fin } |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
|
1onn |
⊢ 1o ∈ ω |
13 |
12
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 1o ∈ ω ) |
14 |
1 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
15 |
1 8 4
|
ply1vsca |
⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
16 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
17 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 ∈ 𝐵 ) |
18 |
8 9 10 11 13 14 15 16 17
|
mplcoe1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
19 |
7
|
fvcoe1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) |
21 |
12
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 1o ∈ ω ) |
22 |
|
eqid |
⊢ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) |
23 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
24 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
25 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑅 ∈ Ring ) |
26 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑎 ∈ ( ℕ0 ↑m 1o ) ) |
27 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
28 |
|
0ex |
⊢ ∅ ∈ V |
29 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
31 |
29
|
oveq2d |
⊢ ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑏 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
33 |
28 32
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
34 |
27 33
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
37 |
35
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
38 |
36 37
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) ) |
40 |
28 39
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
41 |
34 40
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
42 |
|
df1o2 |
⊢ 1o = { ∅ } |
43 |
42
|
raleqi |
⊢ ( ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
44 |
42 43
|
raleqbii |
⊢ ( ∀ 𝑥 ∈ 1o ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
45 |
41 44
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑥 ∈ 1o ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
46 |
8 9 10 11 21 22 23 24 25 26 45
|
mplcoe5 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) ) |
47 |
42
|
mpteq1i |
⊢ ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) = ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) |
48 |
47
|
oveq2i |
⊢ ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) |
49 |
8
|
mplring |
⊢ ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ Ring ) |
50 |
12 49
|
mpan |
⊢ ( 𝑅 ∈ Ring → ( 1o mPoly 𝑅 ) ∈ Ring ) |
51 |
22
|
ringmgp |
⊢ ( ( 1o mPoly 𝑅 ) ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
52 |
50 51
|
syl |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
54 |
28
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∅ ∈ V ) |
55 |
22 14
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
56 |
55
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
57 |
5 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
58 |
57
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑀 ) ) |
59 |
|
ssv |
⊢ 𝐵 ⊆ V |
60 |
59
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 ⊆ V ) |
61 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) ∈ V ) |
62 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
63 |
1 8 62
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
64 |
22 63
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
65 |
5 62
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑀 ) |
66 |
64 65
|
eqtr3i |
⊢ ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( +g ‘ 𝑀 ) |
67 |
66
|
oveqi |
⊢ ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) |
68 |
67
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
69 |
23 6 56 58 60 61 68
|
mulgpropd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ↑ ) |
70 |
69
|
oveqd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
72 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
73 |
5
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
74 |
72 73
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑀 ∈ Mnd ) |
76 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) → 𝑎 : 1o ⟶ ℕ0 ) |
77 |
|
0lt1o |
⊢ ∅ ∈ 1o |
78 |
|
ffvelcdm |
⊢ ( ( 𝑎 : 1o ⟶ ℕ0 ∧ ∅ ∈ 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) |
79 |
76 77 78
|
sylancl |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) |
80 |
79
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) |
81 |
2 1 3
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑋 ∈ 𝐵 ) |
83 |
57 6 75 80 82
|
mulgnn0cld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ∈ 𝐵 ) |
84 |
71 83
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 ) |
85 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( 𝑎 ‘ 𝑐 ) = ( 𝑎 ‘ ∅ ) ) |
86 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
87 |
2
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
88 |
86 87
|
eqtr4di |
⊢ ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = 𝑋 ) |
89 |
85 88
|
oveq12d |
⊢ ( 𝑐 = ∅ → ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
90 |
55 89
|
gsumsn |
⊢ ( ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ∧ ∅ ∈ V ∧ ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
91 |
53 54 84 90
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
92 |
48 91
|
eqtrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
93 |
46 92 71
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
94 |
20 93
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) |
95 |
94
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) |
96 |
95
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) ) |
97 |
|
nn0ex |
⊢ ℕ0 ∈ V |
98 |
97
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∈ V |
99 |
98
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∈ V ) |
100 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
101 |
100
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝑃 ∈ V ) |
102 |
|
ovexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ V ) |
103 |
3 14
|
eqtr3i |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
104 |
103
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
105 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
106 |
1 8 105
|
ply1plusg |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
107 |
106
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
108 |
99 101 102 104 107
|
gsumpropd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
109 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
110 |
8 1 109
|
ply1mpl0 |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
111 |
8
|
mpllmod |
⊢ ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ LMod ) |
112 |
12 16 111
|
sylancr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ LMod ) |
113 |
|
lmodcmn |
⊢ ( ( 1o mPoly 𝑅 ) ∈ LMod → ( 1o mPoly 𝑅 ) ∈ CMnd ) |
114 |
112 113
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ CMnd ) |
115 |
97
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ℕ0 ∈ V ) |
116 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
117 |
116
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
118 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
119 |
7 3 1 118
|
coe1f |
⊢ ( 𝐾 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
120 |
119
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
121 |
120
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
122 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
123 |
122
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
125 |
124
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
126 |
121 125
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
127 |
74
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
128 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
129 |
81
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
130 |
57 6 127 128 129
|
mulgnn0cld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
131 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
132 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
133 |
3 131 4 132
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
134 |
117 126 130 133
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
135 |
134
|
fmpttd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) |
136 |
1 2 3 4 5 6 7
|
ply1coefsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
137 |
|
eqid |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) |
138 |
42 97 28 137
|
mapsnf1o2 |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 |
139 |
138
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 ) |
140 |
14 110 114 115 135 136 139
|
gsumf1o |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) ) |
141 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) |
142 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
143 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) |
144 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝑘 ↑ 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
145 |
143 144
|
oveq12d |
⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) |
146 |
80 141 142 145
|
fmptco |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) |
147 |
146
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) ) |
148 |
108 140 147
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
149 |
18 96 148
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |