| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1coe.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1coe.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 3 |  | ply1coe.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | ply1coe.n | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | ply1coe.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | ply1coe.e | ⊢  ↑   =  ( .g ‘ 𝑀 ) | 
						
							| 7 |  | ply1coe.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐾 ) | 
						
							| 8 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 9 |  | psr1baslem | ⊢ ( ℕ0  ↑m  1o )  =  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ 𝑑  “  ℕ )  ∈  Fin } | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 12 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  1o  ∈  ω ) | 
						
							| 14 | 1 3 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 15 | 1 8 4 | ply1vsca | ⊢  ·   =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐾  ∈  𝐵 ) | 
						
							| 18 | 8 9 10 11 13 14 15 16 17 | mplcoe1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐾  =  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐾 ‘ 𝑎 )  ·  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) ) | 
						
							| 19 | 7 | fvcoe1 | ⊢ ( ( 𝐾  ∈  𝐵  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐾 ‘ 𝑎 )  =  ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐾 ‘ 𝑎 )  =  ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) | 
						
							| 21 | 12 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  1o  ∈  ω ) | 
						
							| 22 |  | eqid | ⊢ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  =  ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 23 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( 1o  mVar  𝑅 )  =  ( 1o  mVar  𝑅 ) | 
						
							| 25 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  𝑅  ∈  Ring ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  𝑎  ∈  ( ℕ0  ↑m  1o ) ) | 
						
							| 27 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) | 
						
							| 28 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑏  =  ∅  →  ( ( 1o  mVar  𝑅 ) ‘ 𝑏 )  =  ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑏  =  ∅  →  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) | 
						
							| 31 | 29 | oveq2d | ⊢ ( 𝑏  =  ∅  →  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( 𝑏  =  ∅  →  ( ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) ) | 
						
							| 33 | 28 32 | ralsn | ⊢ ( ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) | 
						
							| 34 | 27 33 | sylibr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ( 1o  mVar  𝑅 ) ‘ 𝑥 )  =  ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) ) | 
						
							| 37 | 35 | oveq1d | ⊢ ( 𝑥  =  ∅  →  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 38 | 36 37 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) ) | 
						
							| 40 | 28 39 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ∅ } ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ ∅ ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 41 | 34 40 | sylibr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ∀ 𝑥  ∈  { ∅ } ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 42 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 43 | 42 | raleqi | ⊢ ( ∀ 𝑏  ∈  1o ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 44 | 42 43 | raleqbii | ⊢ ( ∀ 𝑥  ∈  1o ∀ 𝑏  ∈  1o ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) )  ↔  ∀ 𝑥  ∈  { ∅ } ∀ 𝑏  ∈  { ∅ } ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 45 | 41 44 | sylibr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ∀ 𝑥  ∈  1o ∀ 𝑏  ∈  1o ( ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) )  =  ( ( ( 1o  mVar  𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑏 ) ) ) | 
						
							| 46 | 8 9 10 11 21 22 23 24 25 26 45 | mplcoe5 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  1o  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) ) ) | 
						
							| 47 | 42 | mpteq1i | ⊢ ( 𝑐  ∈  1o  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) )  =  ( 𝑐  ∈  { ∅ }  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) | 
						
							| 48 | 47 | oveq2i | ⊢ ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  1o  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) )  =  ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  { ∅ }  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) ) | 
						
							| 49 | 8 | mplring | ⊢ ( ( 1o  ∈  ω  ∧  𝑅  ∈  Ring )  →  ( 1o  mPoly  𝑅 )  ∈  Ring ) | 
						
							| 50 | 12 49 | mpan | ⊢ ( 𝑅  ∈  Ring  →  ( 1o  mPoly  𝑅 )  ∈  Ring ) | 
						
							| 51 | 22 | ringmgp | ⊢ ( ( 1o  mPoly  𝑅 )  ∈  Ring  →  ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  ∈  Mnd ) | 
						
							| 52 | 50 51 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  ∈  Mnd ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  ∈  Mnd ) | 
						
							| 54 | 28 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ∅  ∈  V ) | 
						
							| 55 | 22 14 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐵  =  ( Base ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ) | 
						
							| 57 | 5 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 58 | 57 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐵  =  ( Base ‘ 𝑀 ) ) | 
						
							| 59 |  | ssv | ⊢ 𝐵  ⊆  V | 
						
							| 60 | 59 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐵  ⊆  V ) | 
						
							| 61 |  | ovexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  ( 𝑎  ∈  V  ∧  𝑏  ∈  V ) )  →  ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑏 )  ∈  V ) | 
						
							| 62 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 63 | 1 8 62 | ply1mulr | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 64 | 22 63 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 65 | 5 62 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ 𝑀 ) | 
						
							| 66 | 64 65 | eqtr3i | ⊢ ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) )  =  ( +g ‘ 𝑀 ) | 
						
							| 67 | 66 | oveqi | ⊢ ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑏 )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) | 
						
							| 68 | 67 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  ( 𝑎  ∈  V  ∧  𝑏  ∈  V ) )  →  ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑏 )  =  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 69 | 23 6 56 58 60 61 68 | mulgpropd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) )  =   ↑  ) | 
						
							| 70 | 69 | oveqd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 )  =  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 )  =  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) | 
						
							| 72 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 73 | 5 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 75 | 74 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  𝑀  ∈  Mnd ) | 
						
							| 76 |  | elmapi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  1o )  →  𝑎 : 1o ⟶ ℕ0 ) | 
						
							| 77 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 78 |  | ffvelcdm | ⊢ ( ( 𝑎 : 1o ⟶ ℕ0  ∧  ∅  ∈  1o )  →  ( 𝑎 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 79 | 76 77 78 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  1o )  →  ( 𝑎 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑎 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 81 | 2 1 3 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 83 | 57 6 75 80 82 | mulgnn0cld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 84 | 71 83 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 )  ∈  𝐵 ) | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑐  =  ∅  →  ( 𝑎 ‘ 𝑐 )  =  ( 𝑎 ‘ ∅ ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑐  =  ∅  →  ( ( 1o  mVar  𝑅 ) ‘ 𝑐 )  =  ( ( 1o  mVar  𝑅 ) ‘ ∅ ) ) | 
						
							| 87 | 2 | vr1val | ⊢ 𝑋  =  ( ( 1o  mVar  𝑅 ) ‘ ∅ ) | 
						
							| 88 | 86 87 | eqtr4di | ⊢ ( 𝑐  =  ∅  →  ( ( 1o  mVar  𝑅 ) ‘ 𝑐 )  =  𝑋 ) | 
						
							| 89 | 85 88 | oveq12d | ⊢ ( 𝑐  =  ∅  →  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) )  =  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 ) ) | 
						
							| 90 | 55 89 | gsumsn | ⊢ ( ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  ∈  Mnd  ∧  ∅  ∈  V  ∧  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 )  ∈  𝐵 )  →  ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  { ∅ }  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) )  =  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 ) ) | 
						
							| 91 | 53 54 84 90 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  { ∅ }  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) )  =  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 ) ) | 
						
							| 92 | 48 91 | eqtrid | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( mulGrp ‘ ( 1o  mPoly  𝑅 ) )  Σg  ( 𝑐  ∈  1o  ↦  ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) ( ( 1o  mVar  𝑅 ) ‘ 𝑐 ) ) ) )  =  ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o  mPoly  𝑅 ) ) ) 𝑋 ) ) | 
						
							| 93 | 46 92 71 | 3eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) | 
						
							| 94 | 20 93 | oveq12d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑎  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝐾 ‘ 𝑎 )  ·  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) | 
						
							| 95 | 94 | mpteq2dva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐾 ‘ 𝑎 )  ·  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐾 ‘ 𝑎 )  ·  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  if ( 𝑏  =  𝑎 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) )  =  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) ) ) | 
						
							| 97 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 98 | 97 | mptex | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  ∈  V | 
						
							| 99 | 98 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 100 | 1 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 101 | 100 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝑃  ∈  V ) | 
						
							| 102 |  | ovexd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 1o  mPoly  𝑅 )  ∈  V ) | 
						
							| 103 | 3 14 | eqtr3i | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 105 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 106 | 1 8 105 | ply1plusg | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 107 | 106 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( +g ‘ 𝑃 )  =  ( +g ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 108 | 99 101 102 104 107 | gsumpropd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 109 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 110 | 8 1 109 | ply1mpl0 | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 111 | 8 | mpllmod | ⊢ ( ( 1o  ∈  ω  ∧  𝑅  ∈  Ring )  →  ( 1o  mPoly  𝑅 )  ∈  LMod ) | 
						
							| 112 | 12 16 111 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 1o  mPoly  𝑅 )  ∈  LMod ) | 
						
							| 113 |  | lmodcmn | ⊢ ( ( 1o  mPoly  𝑅 )  ∈  LMod  →  ( 1o  mPoly  𝑅 )  ∈  CMnd ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 1o  mPoly  𝑅 )  ∈  CMnd ) | 
						
							| 115 | 97 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 116 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑃  ∈  LMod ) | 
						
							| 118 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 119 | 7 3 1 118 | coe1f | ⊢ ( 𝐾  ∈  𝐵  →  𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 120 | 119 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 121 | 120 | ffvelcdmda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 122 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 123 | 122 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 124 | 123 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 125 | 124 | fveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 126 | 121 125 | eleqtrrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 127 | 74 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  Mnd ) | 
						
							| 128 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 129 | 81 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 130 | 57 6 127 128 129 | mulgnn0cld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 131 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 132 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 133 | 3 131 4 132 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑘  ↑  𝑋 )  ∈  𝐵 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) )  ∈  𝐵 ) | 
						
							| 134 | 117 126 130 133 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) )  ∈  𝐵 ) | 
						
							| 135 | 134 | fmpttd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) | 
						
							| 136 | 1 2 3 4 5 6 7 | ply1coefsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 137 |  | eqid | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) )  =  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) | 
						
							| 138 | 42 97 28 137 | mapsnf1o2 | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) : ( ℕ0  ↑m  1o ) –1-1-onto→ ℕ0 | 
						
							| 139 | 138 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) : ( ℕ0  ↑m  1o ) –1-1-onto→ ℕ0 ) | 
						
							| 140 | 14 110 114 115 135 136 139 | gsumf1o | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( ( 1o  mPoly  𝑅 )  Σg  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  ∘  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) ) ) ) | 
						
							| 141 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) )  =  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) ) | 
						
							| 142 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 143 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑎 ‘ ∅ )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) | 
						
							| 144 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑎 ‘ ∅ )  →  ( 𝑘  ↑  𝑋 )  =  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) | 
						
							| 145 | 143 144 | oveq12d | ⊢ ( 𝑘  =  ( 𝑎 ‘ ∅ )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) | 
						
							| 146 | 80 141 142 145 | fmptco | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  ∘  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) )  =  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) ) | 
						
							| 147 | 146 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 1o  mPoly  𝑅 )  Σg  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  ∘  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑎 ‘ ∅ ) ) ) )  =  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) ) ) | 
						
							| 148 | 108 140 147 | 3eqtrrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( ( 1o  mPoly  𝑅 )  Σg  ( 𝑎  ∈  ( ℕ0  ↑m  1o )  ↦  ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) )  ·  ( ( 𝑎 ‘ ∅ )  ↑  𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 149 | 18 96 148 | 3eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐾  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) ) ) ) |