| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcoe1ply1eq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | eqcoe1ply1eq.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | eqcoe1ply1eq.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐾 ) | 
						
							| 4 |  | eqcoe1ply1eq.c | ⊢ 𝐶  =  ( coe1 ‘ 𝐿 ) | 
						
							| 5 | 1 2 3 4 | eqcoe1ply1eq | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 )  →  𝐾  =  𝐿 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝐾  =  𝐿  →  ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐿 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝐾  =  𝐿 )  →  ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐿 ) ) | 
						
							| 8 | 7 3 4 | 3eqtr4g | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝐾  =  𝐿 )  →  𝐴  =  𝐶 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝐾  =  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  =  𝐶 ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝐾  =  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) ) | 
						
							| 11 | 10 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝐾  =  𝐿 )  →  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( 𝐾  =  𝐿  →  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) ) ) | 
						
							| 13 | 5 12 | impbid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 )  ↔  𝐾  =  𝐿 ) ) |