| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1coefsupp.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1coefsupp.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 3 |  | ply1coefsupp.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | ply1coefsupp.n | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | ply1coefsupp.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 6 |  | ply1coefsupp.e | ⊢  ↑   =  ( .g ‘ 𝑀 ) | 
						
							| 7 |  | ply1coefsupp.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐾 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 9 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝑃  ∈  LMod ) | 
						
							| 11 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 13 | 5 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 14 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 15 | 5 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  Mnd ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 19 | 2 1 3 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 21 | 13 6 17 18 20 | mulgnn0cld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 | 7 3 1 22 | coe1f | ⊢ ( 𝐾  ∈  𝐵  →  𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 26 | 7 3 1 25 | coe1sfi | ⊢ ( 𝐾  ∈  𝐵  →  𝐴  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐴  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 28 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 32 | 27 31 | breqtrrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐴  finSupp  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) |