Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
3 |
2
|
psr1crng |
⊢ ( 𝑅 ∈ CRing → ( PwSer1 ‘ 𝑅 ) ∈ CRing ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
5 |
1 2 4
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
6 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
7 |
1 2 4
|
ply1subrg |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
9 |
5 8
|
eqeltrrid |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
10 |
1 2
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
11 |
10
|
subrgcrng |
⊢ ( ( ( PwSer1 ‘ 𝑅 ) ∈ CRing ∧ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) → 𝑃 ∈ CRing ) |
12 |
3 9 11
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |