| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1val.1 | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( PwSer1 ‘ 𝑅 )  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 3 | 2 | psr1crng | ⊢ ( 𝑅  ∈  CRing  →  ( PwSer1 ‘ 𝑅 )  ∈  CRing ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 5 | 1 4 | ply1bas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 6 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 7 | 1 2 4 | ply1subrg | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 9 | 5 8 | eqeltrrid | ⊢ ( 𝑅  ∈  CRing  →  ( Base ‘ ( 1o  mPoly  𝑅 ) )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 10 | 1 2 | ply1val | ⊢ 𝑃  =  ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 11 | 10 | subrgcrng | ⊢ ( ( ( PwSer1 ‘ 𝑅 )  ∈  CRing  ∧  ( Base ‘ ( 1o  mPoly  𝑅 ) )  ∈  ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) )  →  𝑃  ∈  CRing ) | 
						
							| 12 | 3 9 11 | syl2anc | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) |