Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltlss.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1degltlss.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ply1degltlss.1 |
⊢ 𝑆 = ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) |
4 |
|
ply1degltlss.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
ply1degltlss.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
ply1degltel.1 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → 𝐹 = ( 0g ‘ 𝑃 ) ) |
8 |
2 1 6
|
deg1xrf |
⊢ 𝐷 : 𝐵 ⟶ ℝ* |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ ℝ* ) |
10 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn 𝐵 ) |
11 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
13 |
6 12
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → ( 0g ‘ 𝑃 ) ∈ 𝐵 ) |
14 |
5 11 13
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝐵 ) |
15 |
2 1 12
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
17 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
18 |
17
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
19 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
20 |
19
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
21 |
18
|
xrleidd |
⊢ ( 𝜑 → -∞ ≤ -∞ ) |
22 |
19
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝑁 ) |
23 |
18 20 18 21 22
|
elicod |
⊢ ( 𝜑 → -∞ ∈ ( -∞ [,) 𝑁 ) ) |
24 |
16 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ∈ ( -∞ [,) 𝑁 ) ) |
25 |
10 14 24
|
elpreimad |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
26 |
25 3
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑆 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 0g ‘ 𝑃 ) ∈ 𝑆 ) |
28 |
7 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → 𝐹 ∈ 𝑆 ) |
29 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ⊆ dom 𝐷 |
30 |
3 29
|
eqsstri |
⊢ 𝑆 ⊆ dom 𝐷 |
31 |
8
|
fdmi |
⊢ dom 𝐷 = 𝐵 |
32 |
30 31
|
sseqtri |
⊢ 𝑆 ⊆ 𝐵 |
33 |
32 28
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → 𝐹 ∈ 𝐵 ) |
34 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ) |
35 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
36 |
34 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐹 ) = -∞ ) |
37 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → 𝑁 ∈ ℝ ) |
38 |
37
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → -∞ < 𝑁 ) |
39 |
36 38
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐹 ) < 𝑁 ) |
40 |
|
pm5.1 |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
41 |
28 33 39 40
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑃 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
42 |
3
|
eleq2i |
⊢ ( 𝐹 ∈ 𝑆 ↔ 𝐹 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → 𝐷 Fn 𝐵 ) |
44 |
|
elpreima |
⊢ ( 𝐷 Fn 𝐵 → ( 𝐹 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐹 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ) ) ) |
46 |
42 45
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ) ) ) |
47 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
49 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
50 |
2 1 12 6
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
52 |
51
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
53 |
52
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
54 |
53
|
mnfled |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → -∞ ≤ ( 𝐷 ‘ 𝐹 ) ) |
55 |
53 54
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
56 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → 𝑁 ∈ ℝ* ) |
57 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ↔ ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
58 |
17 56 57
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ↔ ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
59 |
|
df-3an |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ↔ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ) ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) |
60 |
58 59
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ↔ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝐹 ) ) ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
61 |
55 60
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ↔ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) |
62 |
61
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → ( ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( -∞ [,) 𝑁 ) ) ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
63 |
46 62
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |
64 |
41 63
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) < 𝑁 ) ) ) |