Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltdim.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1degltdim.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ply1degltdim.s |
⊢ 𝑆 = ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) |
4 |
|
ply1degltdim.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
ply1degltdim.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
6 |
|
ply1degltdim.e |
⊢ 𝐸 = ( 𝑃 ↾s 𝑆 ) |
7 |
1 5
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
8 |
5
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
1 2 3 4 8
|
ply1degltlss |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
11 |
6 10
|
lsslvec |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) → 𝐸 ∈ LVec ) |
12 |
7 9 11
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ LVec ) |
13 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
15 |
1 2 3 4 5 6 14
|
ply1degltdimlem |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
17 |
2 1 16
|
deg1xrf |
⊢ 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* |
18 |
|
ffn |
⊢ ( 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
19 |
17 18
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
21 |
20 16
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
22 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
23 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
24 |
20
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
25 |
8 23 24
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
27 |
|
elfzonn0 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
29 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
30 |
29 1 16
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
31 |
8 30
|
syl |
⊢ ( 𝜑 → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
21 22 26 28 32
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
34 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ∈ ℝ* ) |
36 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
37 |
36
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
39 |
2 1 16
|
deg1xrcl |
⊢ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
40 |
33 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
41 |
40
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ≤ ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
42 |
27
|
nn0red |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ ) |
43 |
42
|
rexrd |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ* ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℝ* ) |
45 |
2 1 29 20 22
|
deg1pwle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
46 |
8 27 45
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
47 |
|
elfzolt2 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 < 𝑁 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 < 𝑁 ) |
49 |
40 44 38 46 48
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) < 𝑁 ) |
50 |
35 38 40 41 49
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( -∞ [,) 𝑁 ) ) |
51 |
19 33 50
|
elpreimad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
52 |
51 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝑆 ) |
53 |
16 10
|
lssss |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑃 ) → 𝑆 ⊆ ( Base ‘ 𝑃 ) ) |
54 |
6 16
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑃 ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
55 |
9 53 54
|
3syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
57 |
52 56
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
58 |
57 14
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝐸 ) ) |
59 |
58
|
ffnd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) Fn ( 0 ..^ 𝑁 ) ) |
60 |
|
hashfn |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
61 |
59 60
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
62 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ V ) |
63 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
64 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
65 |
5 64
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑅 ∈ NzRing ) |
67 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
68 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) → 𝑖 ∈ ℕ0 ) |
69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑖 ∈ ℕ0 ) |
70 |
1 29 22 66 67 69
|
ply1moneq |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ↔ 𝑛 = 𝑖 ) ) |
71 |
70
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
72 |
71
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
73 |
72
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
74 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
75 |
14 74
|
f1mpt |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ↔ ( ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ∧ ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) ) |
76 |
63 73 75
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ) |
77 |
|
hashf1rn |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ V ∧ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ) → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
78 |
62 76 77
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
79 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
80 |
4 79
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
81 |
61 78 80
|
3eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 ) |
82 |
|
hashvnfin |
⊢ ( ( ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) ) |
83 |
82
|
imp |
⊢ ( ( ( ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = 𝑁 ) → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) |
84 |
15 4 81 83
|
syl21anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) |
85 |
|
eqid |
⊢ ( LBasis ‘ 𝐸 ) = ( LBasis ‘ 𝐸 ) |
86 |
85
|
dimvalfi |
⊢ ( ( 𝐸 ∈ LVec ∧ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( LBasis ‘ 𝐸 ) ∧ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ Fin ) → ( dim ‘ 𝐸 ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
87 |
12 15 84 86
|
syl3anc |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) = ( ♯ ‘ ran ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
88 |
87 81
|
eqtrd |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) = 𝑁 ) |