Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltdim.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1degltdim.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ply1degltdim.s |
⊢ 𝑆 = ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) |
4 |
|
ply1degltdim.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
ply1degltdim.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
6 |
|
ply1degltdim.e |
⊢ 𝐸 = ( 𝑃 ↾s 𝑆 ) |
7 |
|
ply1degltdimlem.f |
⊢ 𝐹 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑁 ∈ ℕ0 ) |
10 |
5
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
11 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
14 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) → 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) → 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
16 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ DivRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
20 |
19
|
feq3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) → ( 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ↔ 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
21 |
15 20
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) → 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) |
24 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 0 ..^ 𝑁 ) ∈ V ) |
25 |
1 5
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
26 |
25
|
lveclmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
27 |
1 2 3 4 10
|
ply1degltlss |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
29 |
28
|
lsssubg |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑃 ) ) |
30 |
26 27 29
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝑃 ) ) |
31 |
|
subgsubm |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑃 ) → 𝑆 ∈ ( SubMnd ‘ 𝑃 ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝑃 ) ) |
33 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑆 ∈ ( SubMnd ‘ 𝑃 ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
35 |
2 1 34
|
deg1xrf |
⊢ 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* |
36 |
|
ffn |
⊢ ( 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
37 |
35 36
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
38 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
39 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
40 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
41 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑃 ∈ LMod ) |
42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
43 |
34 28
|
lssss |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑃 ) → 𝑆 ⊆ ( Base ‘ 𝑃 ) ) |
44 |
27 43
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑃 ) ) |
45 |
6 34
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑃 ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
47 |
46 44
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝑃 ) ) |
48 |
47
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
49 |
48
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
50 |
34 38 39 40 41 42 49
|
lmodvscld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
51 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
52 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → -∞ ∈ ℝ* ) |
53 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
54 |
53
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑁 ∈ ℝ* ) |
56 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* ) |
57 |
56 50
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ∈ ℝ* ) |
58 |
57
|
mnfled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → -∞ ≤ ( 𝐷 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ) |
59 |
56 49
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ 𝑥 ) ∈ ℝ* ) |
60 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑅 ∈ Ring ) |
61 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
62 |
42 61
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑘 ∈ ( Base ‘ 𝑅 ) ) |
63 |
1 2 60 34 8 39 62 49
|
deg1vscale |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ≤ ( 𝐷 ‘ 𝑥 ) ) |
64 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝜑 ) |
65 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
66 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
67 |
65 66
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → 𝑥 ∈ 𝑆 ) |
68 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → -∞ ∈ ℝ* ) |
69 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑁 ∈ ℝ* ) |
70 |
35 36
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
72 |
71 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
73 |
|
elpreima |
⊢ ( 𝐷 Fn ( Base ‘ 𝑃 ) → ( 𝑥 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ) ) ) |
74 |
73
|
simplbda |
⊢ ( ( 𝐷 Fn ( Base ‘ 𝑃 ) ∧ 𝑥 ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ) |
75 |
70 72 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ) |
76 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ↔ ( ( 𝐷 ‘ 𝑥 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝑥 ) ∧ ( 𝐷 ‘ 𝑥 ) < 𝑁 ) ) ) |
77 |
76
|
biimpa |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) ∧ ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ) → ( ( 𝐷 ‘ 𝑥 ) ∈ ℝ* ∧ -∞ ≤ ( 𝐷 ‘ 𝑥 ) ∧ ( 𝐷 ‘ 𝑥 ) < 𝑁 ) ) |
78 |
77
|
simp3d |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) ∧ ( 𝐷 ‘ 𝑥 ) ∈ ( -∞ [,) 𝑁 ) ) → ( 𝐷 ‘ 𝑥 ) < 𝑁 ) |
79 |
68 69 75 78
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐷 ‘ 𝑥 ) < 𝑁 ) |
80 |
64 67 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ 𝑥 ) < 𝑁 ) |
81 |
57 59 55 63 80
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) < 𝑁 ) |
82 |
52 55 57 58 81
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝐷 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ∈ ( -∞ [,) 𝑁 ) ) |
83 |
37 50 82
|
elpreimad |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
84 |
83 3
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑆 ) |
85 |
84
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑆 ) |
86 |
85
|
ad5ant15 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐸 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑆 ) |
87 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
88 |
35 36
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
89 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
90 |
89 34
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
91 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
92 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
93 |
89
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
94 |
10 92 93
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
96 |
|
elfzonn0 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
98 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
99 |
98 1 34
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
100 |
10 99
|
syl |
⊢ ( 𝜑 → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
102 |
90 91 95 97 101
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
103 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ∈ ℝ* ) |
104 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
105 |
2 1 34
|
deg1xrcl |
⊢ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
106 |
102 105
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ℝ* ) |
107 |
106
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → -∞ ≤ ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
108 |
96
|
nn0red |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ ) |
109 |
108
|
rexrd |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ℝ* ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℝ* ) |
111 |
2 1 98 89 91
|
deg1pwle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
112 |
10 96 111
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ 𝑛 ) |
113 |
|
elfzolt2 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 < 𝑁 ) |
114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 < 𝑁 ) |
115 |
106 110 104 112 114
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) < 𝑁 ) |
116 |
103 104 106 107 115
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( -∞ [,) 𝑁 ) ) |
117 |
88 102 116
|
elpreimad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
118 |
117 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝑆 ) |
119 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 = ( Base ‘ 𝐸 ) ) |
120 |
118 119
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
121 |
120 7
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝐸 ) ) |
122 |
121
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝐸 ) ) |
123 |
|
inidm |
⊢ ( ( 0 ..^ 𝑁 ) ∩ ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) |
124 |
86 87 122 24 24 123
|
off |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
125 |
24 33 124 6
|
gsumsubm |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) |
126 |
|
ringmnd |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Mnd ) |
127 |
10 92 126
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ Mnd ) |
128 |
35 36
|
mp1i |
⊢ ( 𝜑 → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
129 |
34 13
|
mndidcl |
⊢ ( 𝑃 ∈ Mnd → ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
130 |
127 129
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
131 |
51
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
132 |
2 1 34
|
deg1xrcl |
⊢ ( ( 0g ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ∈ ℝ* ) |
133 |
130 132
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ∈ ℝ* ) |
134 |
133
|
mnfled |
⊢ ( 𝜑 → -∞ ≤ ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ) |
135 |
2 1 13
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
136 |
10 135
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
137 |
53
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝑁 ) |
138 |
136 137
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) < 𝑁 ) |
139 |
131 54 133 134 138
|
elicod |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0g ‘ 𝑃 ) ) ∈ ( -∞ [,) 𝑁 ) ) |
140 |
128 130 139
|
elpreimad |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ) |
141 |
140 3
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑆 ) |
142 |
6 34 13
|
ress0g |
⊢ ( ( 𝑃 ∈ Mnd ∧ ( 0g ‘ 𝑃 ) ∈ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝐸 ) ) |
143 |
127 141 44 142
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝐸 ) ) |
144 |
143
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝐸 ) ) |
145 |
23 125 144
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝑃 ) ) |
146 |
1 8 9 11 7 12 13 22 145
|
ply1gsumz |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) ) |
147 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
148 |
147
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝑅 ) } = { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) |
149 |
148
|
xpeq2d |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) |
150 |
149
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) |
151 |
146 150
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) |
152 |
151
|
expl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) ) |
153 |
152
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ( ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) ) |
154 |
118 7
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
155 |
154
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑆 ) |
156 |
|
eqid |
⊢ ( LSpan ‘ 𝑃 ) = ( LSpan ‘ 𝑃 ) |
157 |
28 156
|
lspssp |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) ⊆ 𝑆 ) |
158 |
26 27 155 157
|
syl3anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) ⊆ 𝑆 ) |
159 |
|
breq1 |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) → ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
160 |
|
oveq1 |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) → ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) = ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) |
161 |
160
|
oveq2d |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) → ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) |
162 |
161
|
eqeq2d |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) → ( 𝑥 = ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑥 = ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) |
163 |
159 162
|
anbi12d |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) → ( ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ↔ ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) ) |
164 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∈ V ) |
165 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0 ..^ 𝑁 ) ∈ V ) |
166 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
167 |
|
eqid |
⊢ ( coe1 ‘ 𝑥 ) = ( coe1 ‘ 𝑥 ) |
168 |
167 34 1 8
|
coe1f |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ 𝑥 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
169 |
166 168
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( coe1 ‘ 𝑥 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
170 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
171 |
170
|
feq3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( coe1 ‘ 𝑥 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ↔ ( coe1 ‘ 𝑥 ) : ℕ0 ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
172 |
169 171
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( coe1 ‘ 𝑥 ) : ℕ0 ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
173 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 |
174 |
173
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) |
175 |
172 174
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
176 |
164 165 175
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ) |
177 |
169
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Fun ( coe1 ‘ 𝑥 ) ) |
178 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
179 |
178
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0 ..^ 𝑁 ) ∈ Fin ) |
180 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∈ V ) |
181 |
177 179 180
|
resfifsupp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
182 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
183 |
10 92 182
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑃 ∈ CMnd ) |
185 |
|
nn0ex |
⊢ ℕ0 ∈ V |
186 |
185
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ℕ0 ∈ V ) |
187 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
188 |
172
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
189 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
190 |
189 92 93
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
191 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
192 |
189 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
193 |
90 91 190 191 192
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
194 |
34 38 39 40 187 188 193
|
lmodvscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
195 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
196 |
194 195
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) ) |
197 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) |
198 |
197 194 195
|
fnmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) Fn ℕ0 ) |
199 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) = ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ) |
200 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
201 |
199 200
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
202 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑗 ∈ ℕ0 ) |
203 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ V ) |
204 |
195 201 202 203
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) = ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
205 |
166
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
206 |
|
icossxr |
⊢ ( -∞ [,) 𝑁 ) ⊆ ℝ* |
207 |
206 75
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐷 ‘ 𝑥 ) ∈ ℝ* ) |
208 |
207
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( 𝐷 ‘ 𝑥 ) ∈ ℝ* ) |
209 |
54
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑁 ∈ ℝ* ) |
210 |
202
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
211 |
210
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑗 ∈ ℝ* ) |
212 |
79
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( 𝐷 ‘ 𝑥 ) < 𝑁 ) |
213 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑁 ≤ 𝑗 ) |
214 |
208 209 211 212 213
|
xrltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( 𝐷 ‘ 𝑥 ) < 𝑗 ) |
215 |
2 1 34 12 167
|
deg1lt |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑗 ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑥 ) < 𝑗 ) → ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
216 |
205 202 214 215
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
217 |
216
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
218 |
147
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
219 |
218
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
220 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → 𝑃 ∈ LMod ) |
221 |
94
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
222 |
100
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
223 |
90 91 221 202 222
|
mulgnn0cld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
224 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
225 |
34 38 39 224 13
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
226 |
220 223 225
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
227 |
219 226
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
228 |
204 217 227
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑗 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) = ( 0g ‘ 𝑃 ) ) |
229 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑁 ∈ ℤ ) |
231 |
198 228 230
|
suppssnn0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
232 |
186
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ V ) |
233 |
198
|
fnfund |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Fun ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
234 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0g ‘ 𝑃 ) ∈ V ) |
235 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 0 ..^ 𝑁 ) ) ) → ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
236 |
232 233 234 179 231 235
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
237 |
34 13 184 186 196 231 236
|
gsumres |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑃 Σg ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ) = ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
238 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( coe1 ‘ 𝑥 ) ∈ V ) |
239 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ V ) |
240 |
154 239
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
241 |
240
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐹 ∈ V ) |
242 |
|
offres |
⊢ ( ( ( coe1 ‘ 𝑥 ) ∈ V ∧ 𝐹 ∈ V ) → ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
243 |
238 241 242
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
244 |
169
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( coe1 ‘ 𝑥 ) Fn ℕ0 ) |
245 |
154
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ 𝑁 ) ) |
246 |
245
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐹 Fn ( 0 ..^ 𝑁 ) ) |
247 |
|
sseqin2 |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ℕ0 ↔ ( ℕ0 ∩ ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) ) |
248 |
173 247
|
mpbi |
⊢ ( ℕ0 ∩ ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) |
249 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) = ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ) |
250 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
251 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
252 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ V ) |
253 |
7 250 251 252
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
254 |
244 246 186 165 248 249 253
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ‘ 𝑗 ) = ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
255 |
173 251
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ℕ0 ) |
256 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ V ) |
257 |
195 201 255 256
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) = ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
258 |
254 257
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ‘ 𝑗 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) ) |
259 |
258
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ‘ 𝑗 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) ) |
260 |
244 246 186 165 248
|
offn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) Fn ( 0 ..^ 𝑁 ) ) |
261 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) ) |
262 |
|
fvreseq0 |
⊢ ( ( ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) Fn ( 0 ..^ 𝑁 ) ∧ ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) Fn ℕ0 ) ∧ ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) ∧ ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) ) → ( ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ‘ 𝑗 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) ) ) |
263 |
260 198 261 174 262
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ‘ 𝑗 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝑗 ) ) ) |
264 |
259 263
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( coe1 ‘ 𝑥 ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ) |
265 |
|
fnresdm |
⊢ ( 𝐹 Fn ( 0 ..^ 𝑁 ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) = 𝐹 ) |
266 |
245 265
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) = 𝐹 ) |
267 |
266
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) = 𝐹 ) |
268 |
267
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) |
269 |
243 264 268
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ) |
270 |
269
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 𝑃 Σg ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ↾ ( 0 ..^ 𝑁 ) ) ) ) |
271 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
272 |
1 98 34 39 89 91 167
|
ply1coe |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
273 |
271 166 272
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 = ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑥 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
274 |
237 270 273
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 = ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) |
275 |
181 274
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( ( ( coe1 ‘ 𝑥 ) ↾ ( 0 ..^ 𝑁 ) ) ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) |
276 |
163 176 275
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) |
277 |
102 7
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ ( Base ‘ 𝑃 ) ) |
278 |
156 34 40 38 224 39 277 26 239
|
ellspd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( LSpan ‘ 𝑃 ) ‘ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) ) |
279 |
278
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑃 ) ‘ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 = ( 𝑃 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) ) ) ) |
280 |
276 279
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( ( LSpan ‘ 𝑃 ) ‘ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
281 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
282 |
154
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 0 ..^ 𝑁 ) ) |
283 |
282
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
284 |
281 283
|
eqtr3id |
⊢ ( 𝜑 → ran 𝐹 = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
285 |
284
|
fveq2d |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) = ( ( LSpan ‘ 𝑃 ) ‘ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
286 |
285
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) = ( ( LSpan ‘ 𝑃 ) ‘ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
287 |
280 286
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) ) |
288 |
158 287
|
eqelssd |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) = 𝑆 ) |
289 |
|
eqid |
⊢ ( LSpan ‘ 𝐸 ) = ( LSpan ‘ 𝐸 ) |
290 |
6 156 289 28
|
lsslsp |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ( ( LSpan ‘ 𝐸 ) ‘ ran 𝐹 ) = ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) ) |
291 |
290
|
eqcomd |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) = ( ( LSpan ‘ 𝐸 ) ‘ ran 𝐹 ) ) |
292 |
26 27 155 291
|
syl3anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑃 ) ‘ ran 𝐹 ) = ( ( LSpan ‘ 𝐸 ) ‘ ran 𝐹 ) ) |
293 |
288 292 46
|
3eqtr3d |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝐸 ) ‘ ran 𝐹 ) = ( Base ‘ 𝐸 ) ) |
294 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
295 |
2
|
fvexi |
⊢ 𝐷 ∈ V |
296 |
|
cnvexg |
⊢ ( 𝐷 ∈ V → ◡ 𝐷 ∈ V ) |
297 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ∈ V ) |
298 |
295 296 297
|
mp2b |
⊢ ( ◡ 𝐷 “ ( -∞ [,) 𝑁 ) ) ∈ V |
299 |
3 298
|
eqeltri |
⊢ 𝑆 ∈ V |
300 |
6 38
|
resssca |
⊢ ( 𝑆 ∈ V → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝐸 ) ) |
301 |
299 300
|
ax-mp |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝐸 ) |
302 |
301
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝐸 ) ) |
303 |
|
eqid |
⊢ ( Scalar ‘ 𝐸 ) = ( Scalar ‘ 𝐸 ) |
304 |
6 39
|
ressvsca |
⊢ ( 𝑆 ∈ V → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝐸 ) ) |
305 |
299 304
|
ax-mp |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝐸 ) |
306 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
307 |
301
|
fveq2i |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝐸 ) ) |
308 |
|
eqid |
⊢ ( LBasis ‘ 𝐸 ) = ( LBasis ‘ 𝐸 ) |
309 |
6 28
|
lsslvec |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝑆 ∈ ( LSubSp ‘ 𝑃 ) ) → 𝐸 ∈ LVec ) |
310 |
25 27 309
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ LVec ) |
311 |
310
|
lveclmodd |
⊢ ( 𝜑 → 𝐸 ∈ LMod ) |
312 |
17 5
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) ∈ DivRing ) |
313 |
|
drngnzr |
⊢ ( ( Scalar ‘ 𝑃 ) ∈ DivRing → ( Scalar ‘ 𝑃 ) ∈ NzRing ) |
314 |
312 313
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) ∈ NzRing ) |
315 |
301 314
|
eqeltrrid |
⊢ ( 𝜑 → ( Scalar ‘ 𝐸 ) ∈ NzRing ) |
316 |
120
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ) |
317 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
318 |
5 317
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
319 |
318
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑅 ∈ NzRing ) |
320 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
321 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑁 ) → 𝑖 ∈ ℕ0 ) |
322 |
321
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → 𝑖 ∈ ℕ0 ) |
323 |
1 98 91 319 320 322
|
ply1moneq |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ↔ 𝑛 = 𝑖 ) ) |
324 |
323
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
325 |
324
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
326 |
325
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) |
327 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
328 |
7 327
|
f1mpt |
⊢ ( 𝐹 : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ↔ ( ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐸 ) ∧ ∀ 𝑛 ∈ ( 0 ..^ 𝑁 ) ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) → 𝑛 = 𝑖 ) ) ) |
329 |
316 326 328
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) –1-1→ ( Base ‘ 𝐸 ) ) |
330 |
294 302 303 305 306 307 308 289 311 315 239 329
|
islbs5 |
⊢ ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝐸 ) ↔ ( ∀ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↑m ( 0 ..^ 𝑁 ) ) ( ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( ·𝑠 ‘ 𝑃 ) 𝐹 ) ) = ( 0g ‘ 𝐸 ) ) → 𝑎 = ( ( 0 ..^ 𝑁 ) × { ( 0g ‘ ( Scalar ‘ 𝑃 ) ) } ) ) ∧ ( ( LSpan ‘ 𝐸 ) ‘ ran 𝐹 ) = ( Base ‘ 𝐸 ) ) ) ) |
331 |
153 293 330
|
mpbir2and |
⊢ ( 𝜑 → ran 𝐹 ∈ ( LBasis ‘ 𝐸 ) ) |