Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1divalg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ply1divalg.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
ply1divalg.m |
⊢ − = ( -g ‘ 𝑃 ) |
5 |
|
ply1divalg.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
6 |
|
ply1divalg.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
7 |
|
ply1divalg.r1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
ply1divalg.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
ply1divalg.g1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
ply1divalg.g2 |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
11 |
|
ply1divex.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
12 |
|
ply1divex.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
13 |
|
ply1divex.u |
⊢ · = ( .r ‘ 𝑅 ) |
14 |
|
ply1divex.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐾 ) |
15 |
|
ply1divex.g3 |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) = 1 ) |
16 |
|
fveq2 |
⊢ ( 𝐹 = 0 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 0 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝐹 = 0 → ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝐹 = 0 → ( ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
19 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Ring ) |
21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐵 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝐹 ≠ 0 ) |
23 |
2 1 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
24 |
20 21 22 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
25 |
24
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
26 |
2 1 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
27 |
7 9 10 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
28 |
27
|
nn0red |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
30 |
25 29
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ ) |
31 |
|
arch |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ → ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
33 |
|
ssrexv |
⊢ ( ℕ ⊆ ℕ0 → ( ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) ) |
34 |
19 32 33
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
35 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
36 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
37 |
|
nn0re |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℝ ) |
39 |
35 36 38
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ↔ ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
40 |
39
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
41 |
40
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
42 |
34 41
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
43 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
44 |
2 1 5
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ 0 ) = -∞ ) |
45 |
7 44
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) = -∞ ) |
46 |
|
0re |
⊢ 0 ∈ ℝ |
47 |
|
readdcl |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐷 ‘ 𝐺 ) + 0 ) ∈ ℝ ) |
48 |
28 46 47
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + 0 ) ∈ ℝ ) |
49 |
48
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
50 |
45 49
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
51 |
|
oveq2 |
⊢ ( 𝑑 = 0 → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) = ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
52 |
51
|
breq2d |
⊢ ( 𝑑 = 0 → ( ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( 0 ∈ ℕ0 ∧ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
54 |
43 50 53
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
55 |
18 42 54
|
pm2.61ne |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
56 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) ) |
57 |
56
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
58 |
|
fvoveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) ) |
59 |
58
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
60 |
59
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
61 |
57 60
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
62 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
63 |
62
|
breq2d |
⊢ ( 𝑎 = 0 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) ) |
64 |
63
|
imbi1d |
⊢ ( 𝑎 = 0 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
65 |
64
|
ralbidv |
⊢ ( 𝑎 = 0 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
66 |
65
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
67 |
|
oveq2 |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
68 |
67
|
breq2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
69 |
68
|
imbi1d |
⊢ ( 𝑎 = 𝑑 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
70 |
69
|
ralbidv |
⊢ ( 𝑎 = 𝑑 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
71 |
70
|
imbi2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
72 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) |
73 |
72
|
breq2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) |
74 |
73
|
imbi1d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
75 |
74
|
ralbidv |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
76 |
75
|
imbi2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
77 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
78 |
7 77
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
79 |
3 5
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → 0 ∈ 𝐵 ) |
80 |
78 79
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
81 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → 0 ∈ 𝐵 ) |
82 |
3 6 5
|
ringrz |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∙ 0 ) = 0 ) |
83 |
78 9 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∙ 0 ) = 0 ) |
84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( 𝑓 − ( 𝐺 ∙ 0 ) ) = ( 𝑓 − 0 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − ( 𝐺 ∙ 0 ) ) = ( 𝑓 − 0 ) ) |
86 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
87 |
78 86
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
88 |
3 5 4
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − 0 ) = 𝑓 ) |
89 |
87 88
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − 0 ) = 𝑓 ) |
90 |
85 89
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → 𝑓 = ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) |
91 |
90
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) ) |
92 |
27
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
93 |
92
|
addid1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + 0 ) = ( 𝐷 ‘ 𝐺 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 0 ) = ( 𝐷 ‘ 𝐺 ) ) |
95 |
91 94
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
96 |
95
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
97 |
|
oveq2 |
⊢ ( 𝑞 = 0 → ( 𝐺 ∙ 𝑞 ) = ( 𝐺 ∙ 0 ) ) |
98 |
97
|
oveq2d |
⊢ ( 𝑞 = 0 → ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) |
99 |
98
|
fveq2d |
⊢ ( 𝑞 = 0 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) ) |
100 |
99
|
breq1d |
⊢ ( 𝑞 = 0 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
101 |
100
|
rspcev |
⊢ ( ( 0 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
102 |
81 96 101
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
103 |
102
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
104 |
103
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
105 |
|
nn0addcl |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
106 |
27 105
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
108 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → 𝑅 ∈ Ring ) |
109 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → 𝑔 ∈ 𝐵 ) |
110 |
2 1 3
|
deg1cl |
⊢ ( 𝑔 ∈ 𝐵 → ( 𝐷 ‘ 𝑔 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
111 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
112 |
|
peano2nn0 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ0 ) |
113 |
112
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑑 + 1 ) ∈ ℕ0 ) |
114 |
111 113
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℕ0 ) |
115 |
114
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℤ ) |
116 |
|
degltlem1 |
⊢ ( ( ( 𝐷 ‘ 𝑔 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℤ ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
117 |
110 115 116
|
syl2an2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
118 |
117
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
119 |
118
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) |
120 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
121 |
120
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
122 |
|
nn0cn |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℂ ) |
123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℂ ) |
124 |
|
peano2cn |
⊢ ( 𝑑 ∈ ℂ → ( 𝑑 + 1 ) ∈ ℂ ) |
125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑑 + 1 ) ∈ ℂ ) |
126 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 1 ∈ ℂ ) |
127 |
121 125 126
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + ( ( 𝑑 + 1 ) − 1 ) ) ) |
128 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
129 |
|
pncan |
⊢ ( ( 𝑑 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑑 + 1 ) − 1 ) = 𝑑 ) |
130 |
123 128 129
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑑 + 1 ) − 1 ) = 𝑑 ) |
131 |
130
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + ( ( 𝑑 + 1 ) − 1 ) ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
132 |
127 131
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
134 |
119 133
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
135 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
136 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
137 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
138 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ 𝐾 ) |
139 |
|
eqid |
⊢ ( coe1 ‘ 𝑔 ) = ( coe1 ‘ 𝑔 ) |
140 |
139 3 1 12
|
coe1f |
⊢ ( 𝑔 ∈ 𝐵 → ( coe1 ‘ 𝑔 ) : ℕ0 ⟶ 𝐾 ) |
141 |
140
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( coe1 ‘ 𝑔 ) : ℕ0 ⟶ 𝐾 ) |
142 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑑 ∈ ℕ0 ) |
143 |
111 142
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
144 |
141 143
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) |
145 |
12 13
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐾 ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) → ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ) |
146 |
137 138 144 145
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ) |
147 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
148 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
149 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
150 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
151 |
12 1 147 148 149 150 3
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
152 |
137 146 142 151
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
153 |
3 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
154 |
135 136 152 153
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
155 |
154
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
156 |
111
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
157 |
156
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ≤ ( 𝐷 ‘ 𝐺 ) ) |
158 |
2 12 1 147 148 149 150
|
deg1tmle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ≤ 𝑑 ) |
159 |
137 146 142 158
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ≤ 𝑑 ) |
160 |
1 2 137 3 6 136 152 111 142 157 159
|
deg1mulle2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
161 |
160
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
162 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
163 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
164 |
163 12 1 147 148 149 150 3 6 13 136 137 146 142 111
|
coe1tmmul2fv |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
165 |
111
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
166 |
122
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑑 ∈ ℂ ) |
167 |
165 166
|
addcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) = ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) |
168 |
167
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) ) |
169 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) |
170 |
169
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) |
171 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
172 |
171 3 1 12
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
173 |
9 172
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
174 |
173
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
175 |
174 111
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝐾 ) |
176 |
12 13
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝐾 ∧ 𝐼 ∈ 𝐾 ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
177 |
137 175 138 144 176
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
178 |
12 13 11
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) → ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
179 |
137 144 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
180 |
170 177 179
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
181 |
164 168 180
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
182 |
181
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
183 |
2 1 3 4 107 108 109 134 155 161 139 162 182
|
deg1sublt |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
184 |
183
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
185 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
186 |
185
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
187 |
|
fvoveq1 |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) ) |
188 |
187
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
189 |
188
|
rexbidv |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
190 |
186 189
|
imbi12d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
191 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
192 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
193 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
194 |
3 4
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
195 |
192 193 154 194
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
196 |
195
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
197 |
196
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
198 |
190 191 197
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
199 |
184 198
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
200 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
201 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
202 |
152
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
203 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
204 |
3 203
|
ringacl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) → ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
205 |
200 201 202 204
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
206 |
87
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
207 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
208 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
209 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
210 |
3 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) |
211 |
200 209 201 210
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) |
212 |
3 203 4
|
grpsubsub4 |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
213 |
206 207 208 211 212
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
214 |
3 203 6
|
ringdi |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) ) → ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
215 |
200 209 201 202 214
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
216 |
215
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
217 |
213 216
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
218 |
217
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) ) |
219 |
218
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
220 |
219
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
221 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝐺 ∙ 𝑟 ) = ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
222 |
221
|
oveq2d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) = ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
223 |
222
|
fveq2d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) ) |
224 |
223
|
breq1d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
225 |
224
|
rspcev |
⊢ ( ( ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
226 |
205 220 225
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
227 |
226
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
228 |
227
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
229 |
228
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
230 |
199 229
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
231 |
230
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
232 |
231
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) → ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
233 |
|
fveq2 |
⊢ ( 𝑔 = 𝑓 → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ 𝑓 ) ) |
234 |
233
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) |
235 |
|
fvoveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) ) |
236 |
235
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
237 |
236
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
238 |
|
oveq2 |
⊢ ( 𝑟 = 𝑞 → ( 𝐺 ∙ 𝑟 ) = ( 𝐺 ∙ 𝑞 ) ) |
239 |
238
|
oveq2d |
⊢ ( 𝑟 = 𝑞 → ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) = ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) |
240 |
239
|
fveq2d |
⊢ ( 𝑟 = 𝑞 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) ) |
241 |
240
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
242 |
241
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
243 |
237 242
|
bitrdi |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
244 |
234 243
|
imbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
245 |
244
|
cbvralvw |
⊢ ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
246 |
232 245
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
247 |
246
|
exp32 |
⊢ ( 𝜑 → ( 𝑑 ∈ ℕ0 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
248 |
247
|
com12 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
249 |
248
|
a2d |
⊢ ( 𝑑 ∈ ℕ0 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) → ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
250 |
66 71 76 71 104 249
|
nn0ind |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
251 |
250
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
252 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) |
253 |
61 251 252
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
254 |
253
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
255 |
55 254
|
mpd |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |