Metamath Proof Explorer


Theorem ply1divmo

Description: Uniqueness of a quotient in a polynomial division. For polynomials F , G such that G =/= 0 and the leading coefficient of G is not a zero divisor, there is at most one polynomial q which satisfies F = ( G x. q ) + r where the degree of r is less than the degree of G . (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses ply1divalg.p 𝑃 = ( Poly1𝑅 )
ply1divalg.d 𝐷 = ( deg1𝑅 )
ply1divalg.b 𝐵 = ( Base ‘ 𝑃 )
ply1divalg.m = ( -g𝑃 )
ply1divalg.z 0 = ( 0g𝑃 )
ply1divalg.t = ( .r𝑃 )
ply1divalg.r1 ( 𝜑𝑅 ∈ Ring )
ply1divalg.f ( 𝜑𝐹𝐵 )
ply1divalg.g1 ( 𝜑𝐺𝐵 )
ply1divalg.g2 ( 𝜑𝐺0 )
ply1divmo.g3 ( 𝜑 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ 𝐸 )
ply1divmo.e 𝐸 = ( RLReg ‘ 𝑅 )
Assertion ply1divmo ( 𝜑 → ∃* 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) )

Proof

Step Hyp Ref Expression
1 ply1divalg.p 𝑃 = ( Poly1𝑅 )
2 ply1divalg.d 𝐷 = ( deg1𝑅 )
3 ply1divalg.b 𝐵 = ( Base ‘ 𝑃 )
4 ply1divalg.m = ( -g𝑃 )
5 ply1divalg.z 0 = ( 0g𝑃 )
6 ply1divalg.t = ( .r𝑃 )
7 ply1divalg.r1 ( 𝜑𝑅 ∈ Ring )
8 ply1divalg.f ( 𝜑𝐹𝐵 )
9 ply1divalg.g1 ( 𝜑𝐺𝐵 )
10 ply1divalg.g2 ( 𝜑𝐺0 )
11 ply1divmo.g3 ( 𝜑 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ 𝐸 )
12 ply1divmo.e 𝐸 = ( RLReg ‘ 𝑅 )
13 7 adantr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑅 ∈ Ring )
14 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
15 13 14 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑃 ∈ Ring )
16 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
17 15 16 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑃 ∈ Grp )
18 8 adantr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝐹𝐵 )
19 9 adantr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝐺𝐵 )
20 simprl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑞𝐵 )
21 3 6 ringcl ( ( 𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵 ) → ( 𝐺 𝑞 ) ∈ 𝐵 )
22 15 19 20 21 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐺 𝑞 ) ∈ 𝐵 )
23 3 4 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( 𝐺 𝑞 ) ∈ 𝐵 ) → ( 𝐹 ( 𝐺 𝑞 ) ) ∈ 𝐵 )
24 17 18 22 23 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐹 ( 𝐺 𝑞 ) ) ∈ 𝐵 )
25 simprr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑟𝐵 )
26 3 6 ringcl ( ( 𝑃 ∈ Ring ∧ 𝐺𝐵𝑟𝐵 ) → ( 𝐺 𝑟 ) ∈ 𝐵 )
27 15 19 25 26 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐺 𝑟 ) ∈ 𝐵 )
28 3 4 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( 𝐺 𝑟 ) ∈ 𝐵 ) → ( 𝐹 ( 𝐺 𝑟 ) ) ∈ 𝐵 )
29 17 18 27 28 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐹 ( 𝐺 𝑟 ) ) ∈ 𝐵 )
30 3 4 grpsubcl ( ( 𝑃 ∈ Grp ∧ ( 𝐹 ( 𝐺 𝑞 ) ) ∈ 𝐵 ∧ ( 𝐹 ( 𝐺 𝑟 ) ) ∈ 𝐵 ) → ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ 𝐵 )
31 17 24 29 30 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ 𝐵 )
32 2 1 3 deg1xrcl ( ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ 𝐵 → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ∈ ℝ* )
33 31 32 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ∈ ℝ* )
34 2 1 3 deg1xrcl ( ( 𝐹 ( 𝐺 𝑟 ) ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ ℝ* )
35 29 34 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ ℝ* )
36 2 1 3 deg1xrcl ( ( 𝐹 ( 𝐺 𝑞 ) ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ∈ ℝ* )
37 24 36 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ∈ ℝ* )
38 35 37 ifcld ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∈ ℝ* )
39 2 1 3 deg1xrcl ( 𝐺𝐵 → ( 𝐷𝐺 ) ∈ ℝ* )
40 19 39 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷𝐺 ) ∈ ℝ* )
41 33 38 40 3jca ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) )
42 41 adantr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) → ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) )
43 1 2 13 3 4 24 29 deg1suble ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ≤ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) )
44 43 adantr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ≤ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) )
45 xrmaxlt ( ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) → ( if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) < ( 𝐷𝐺 ) ↔ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) )
46 37 35 40 45 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) < ( 𝐷𝐺 ) ↔ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) )
47 46 biimpar ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) → if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) < ( 𝐷𝐺 ) )
48 44 47 jca ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) → ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ≤ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∧ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) < ( 𝐷𝐺 ) ) )
49 xrlelttr ( ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ∈ ℝ* ∧ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) → ( ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ≤ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) ∧ if ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) , ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) ) < ( 𝐷𝐺 ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) ) )
50 42 48 49 sylc ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) )
51 50 ex ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) ) )
52 2 1 5 3 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → ( 𝐷𝐺 ) ∈ ℕ0 )
53 7 9 10 52 syl3anc ( 𝜑 → ( 𝐷𝐺 ) ∈ ℕ0 )
54 53 ad2antrr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷𝐺 ) ∈ ℕ0 )
55 54 nn0red ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷𝐺 ) ∈ ℝ )
56 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → 𝑅 ∈ Ring )
57 3 4 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵 ) → ( 𝑟 𝑞 ) ∈ 𝐵 )
58 17 25 20 57 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑟 𝑞 ) ∈ 𝐵 )
59 58 adantr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝑟 𝑞 ) ∈ 𝐵 )
60 3 5 4 grpsubeq0 ( ( 𝑃 ∈ Grp ∧ 𝑟𝐵𝑞𝐵 ) → ( ( 𝑟 𝑞 ) = 0𝑟 = 𝑞 ) )
61 17 25 20 60 syl3anc ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑟 𝑞 ) = 0𝑟 = 𝑞 ) )
62 equcom ( 𝑟 = 𝑞𝑞 = 𝑟 )
63 61 62 bitrdi ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑟 𝑞 ) = 0𝑞 = 𝑟 ) )
64 63 necon3bid ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑟 𝑞 ) ≠ 0𝑞𝑟 ) )
65 64 biimpar ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝑟 𝑞 ) ≠ 0 )
66 2 1 5 3 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ ( 𝑟 𝑞 ) ∈ 𝐵 ∧ ( 𝑟 𝑞 ) ≠ 0 ) → ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ∈ ℕ0 )
67 56 59 65 66 syl3anc ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ∈ ℕ0 )
68 nn0addge1 ( ( ( 𝐷𝐺 ) ∈ ℝ ∧ ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ∈ ℕ0 ) → ( 𝐷𝐺 ) ≤ ( ( 𝐷𝐺 ) + ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ) )
69 55 67 68 syl2anc ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷𝐺 ) ≤ ( ( 𝐷𝐺 ) + ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ) )
70 9 ad2antrr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → 𝐺𝐵 )
71 10 ad2antrr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → 𝐺0 )
72 11 ad2antrr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ 𝐸 )
73 2 1 12 3 6 5 56 70 71 72 59 65 deg1mul2 ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷 ‘ ( 𝐺 ( 𝑟 𝑞 ) ) ) = ( ( 𝐷𝐺 ) + ( 𝐷 ‘ ( 𝑟 𝑞 ) ) ) )
74 69 73 breqtrrd ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷𝐺 ) ≤ ( 𝐷 ‘ ( 𝐺 ( 𝑟 𝑞 ) ) ) )
75 ringabl ( 𝑃 ∈ Ring → 𝑃 ∈ Abel )
76 15 75 syl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑃 ∈ Abel )
77 3 4 76 18 22 27 ablnnncan1 ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) = ( ( 𝐺 𝑟 ) ( 𝐺 𝑞 ) ) )
78 3 6 4 15 19 25 20 ringsubdi ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐺 ( 𝑟 𝑞 ) ) = ( ( 𝐺 𝑟 ) ( 𝐺 𝑞 ) ) )
79 77 78 eqtr4d ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) = ( 𝐺 ( 𝑟 𝑞 ) ) )
80 79 fveq2d ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) = ( 𝐷 ‘ ( 𝐺 ( 𝑟 𝑞 ) ) ) )
81 80 adantr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) = ( 𝐷 ‘ ( 𝐺 ( 𝑟 𝑞 ) ) ) )
82 74 81 breqtrrd ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( 𝐷𝐺 ) ≤ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) )
83 40 33 xrlenltd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐷𝐺 ) ≤ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ↔ ¬ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) ) )
84 83 adantr ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ( ( 𝐷𝐺 ) ≤ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) ↔ ¬ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) ) )
85 82 84 mpbid ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝑞𝑟 ) → ¬ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) )
86 85 ex ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑞𝑟 → ¬ ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) ) )
87 86 necon4ad ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐷 ‘ ( ( 𝐹 ( 𝐺 𝑞 ) ) ( 𝐹 ( 𝐺 𝑟 ) ) ) ) < ( 𝐷𝐺 ) → 𝑞 = 𝑟 ) )
88 51 87 syld ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) → 𝑞 = 𝑟 ) )
89 88 ralrimivva ( 𝜑 → ∀ 𝑞𝐵𝑟𝐵 ( ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) → 𝑞 = 𝑟 ) )
90 oveq2 ( 𝑞 = 𝑟 → ( 𝐺 𝑞 ) = ( 𝐺 𝑟 ) )
91 90 oveq2d ( 𝑞 = 𝑟 → ( 𝐹 ( 𝐺 𝑞 ) ) = ( 𝐹 ( 𝐺 𝑟 ) ) )
92 91 fveq2d ( 𝑞 = 𝑟 → ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) )
93 92 breq1d ( 𝑞 = 𝑟 → ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) )
94 93 rmo4 ( ∃* 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ↔ ∀ 𝑞𝐵𝑟𝐵 ( ( ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) ∧ ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑟 ) ) ) < ( 𝐷𝐺 ) ) → 𝑞 = 𝑟 ) )
95 89 94 sylibr ( 𝜑 → ∃* 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( 𝐺 𝑞 ) ) ) < ( 𝐷𝐺 ) )