Step |
Hyp |
Ref |
Expression |
1 |
|
ply1domn.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
3 |
1
|
ply1nz |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |
4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ NzRing ) |
5 |
|
neanior |
⊢ ( ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ↔ ¬ ( 𝑥 = ( 0g ‘ 𝑃 ) ∨ 𝑦 = ( 0g ‘ 𝑃 ) ) ) |
6 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
11 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑅 ∈ Ring ) |
13 |
|
simplrl |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
14 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑥 ≠ ( 0g ‘ 𝑃 ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑅 ∈ Domn ) |
16 |
|
eqid |
⊢ ( coe1 ‘ 𝑥 ) = ( coe1 ‘ 𝑥 ) |
17 |
6 1 10 8 7 16
|
deg1ldgdomn |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑃 ) ) → ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
18 |
15 13 14 17
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
19 |
|
simplrr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑃 ) ) |
20 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑃 ) ) |
21 |
6 1 7 8 9 10 12 13 14 18 19 20
|
deg1mul2 |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
22 |
6 1 10 8
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ℕ0 ) |
23 |
12 13 14 22
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ℕ0 ) |
24 |
6 1 10 8
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ℕ0 ) |
25 |
12 19 20 24
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ℕ0 ) |
26 |
23 25
|
nn0addcld |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ∈ ℕ0 ) |
27 |
21 26
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) |
28 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
29 |
11 28
|
syl |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Ring ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → 𝑃 ∈ Ring ) |
31 |
8 9
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
32 |
30 13 19 31
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
6 1 10 8
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) ) |
34 |
12 32 33
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) ) |
35 |
27 34
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ) |
36 |
35
|
ex |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑥 ≠ ( 0g ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ) ) |
37 |
5 36
|
syl5bir |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( ¬ ( 𝑥 = ( 0g ‘ 𝑃 ) ∨ 𝑦 = ( 0g ‘ 𝑃 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ) ) |
38 |
37
|
necon4bd |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 0g ‘ 𝑃 ) → ( 𝑥 = ( 0g ‘ 𝑃 ) ∨ 𝑦 = ( 0g ‘ 𝑃 ) ) ) ) |
39 |
38
|
ralrimivva |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ ( Base ‘ 𝑃 ) ∀ 𝑦 ∈ ( Base ‘ 𝑃 ) ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 0g ‘ 𝑃 ) → ( 𝑥 = ( 0g ‘ 𝑃 ) ∨ 𝑦 = ( 0g ‘ 𝑃 ) ) ) ) |
40 |
8 9 10
|
isdomn |
⊢ ( 𝑃 ∈ Domn ↔ ( 𝑃 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑃 ) ∀ 𝑦 ∈ ( Base ‘ 𝑃 ) ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 0g ‘ 𝑃 ) → ( 𝑥 = ( 0g ‘ 𝑃 ) ∨ 𝑦 = ( 0g ‘ 𝑃 ) ) ) ) ) |
41 |
4 39 40
|
sylanbrc |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |