Step |
Hyp |
Ref |
Expression |
1 |
|
ply1fermltlchr.w |
⊢ 𝑊 = ( Poly1 ‘ 𝐹 ) |
2 |
|
ply1fermltlchr.x |
⊢ 𝑋 = ( var1 ‘ 𝐹 ) |
3 |
|
ply1fermltlchr.l |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
ply1fermltlchr.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑊 ) |
5 |
|
ply1fermltlchr.t |
⊢ ↑ = ( .g ‘ 𝑁 ) |
6 |
|
ply1fermltlchr.c |
⊢ 𝐶 = ( algSc ‘ 𝑊 ) |
7 |
|
ply1fermltlchr.a |
⊢ 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
8 |
|
ply1fermltlchr.p |
⊢ 𝑃 = ( chr ‘ 𝐹 ) |
9 |
|
ply1fermltlchr.f |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
10 |
|
ply1fermltlchr.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
11 |
|
ply1fermltlchr.2 |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
4
|
fveq2i |
⊢ ( .g ‘ 𝑁 ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
14 |
5 13
|
eqtri |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( chr ‘ 𝑊 ) = ( chr ‘ 𝑊 ) |
16 |
1
|
ply1crng |
⊢ ( 𝐹 ∈ CRing → 𝑊 ∈ CRing ) |
17 |
9 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ CRing ) |
18 |
1
|
ply1chr |
⊢ ( 𝐹 ∈ CRing → ( chr ‘ 𝑊 ) = ( chr ‘ 𝐹 ) ) |
19 |
9 18
|
syl |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = ( chr ‘ 𝐹 ) ) |
20 |
19 8
|
eqtr4di |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = 𝑃 ) |
21 |
20 10
|
eqeltrd |
⊢ ( 𝜑 → ( chr ‘ 𝑊 ) ∈ ℙ ) |
22 |
9
|
crngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
23 |
2 1 12
|
vr1cl |
⊢ ( 𝐹 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
25 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐹 ) = ( ℤRHom ‘ 𝐹 ) |
26 |
25
|
zrhrhm |
⊢ ( 𝐹 ∈ Ring → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
27 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
29 |
27 28
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
30 |
22 26 29
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
31 |
30 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) |
32 |
1 6 28 12
|
ply1sclcl |
⊢ ( ( 𝐹 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
33 |
22 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
34 |
7 33
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
35 |
12 3 14 15 17 21 24 34
|
freshmansdream |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) ) |
36 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) ) |
37 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) = ( 𝑃 ↑ 𝑋 ) ) |
38 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = ( 𝑃 ↑ 𝐴 ) ) |
39 |
1
|
ply1assa |
⊢ ( 𝐹 ∈ CRing → 𝑊 ∈ AssAlg ) |
40 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
41 |
6 40
|
asclrhm |
⊢ ( 𝑊 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
42 |
9 39 41
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
43 |
9
|
crnggrpd |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
44 |
1
|
ply1sca |
⊢ ( 𝐹 ∈ Grp → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 RingHom 𝑊 ) = ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
47 |
42 46
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 RingHom 𝑊 ) ) |
48 |
|
eqid |
⊢ ( mulGrp ‘ 𝐹 ) = ( mulGrp ‘ 𝐹 ) |
49 |
48 4
|
rhmmhm |
⊢ ( 𝐶 ∈ ( 𝐹 RingHom 𝑊 ) → 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ) |
50 |
47 49
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ) |
51 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
52 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
53 |
10 51 52
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
54 |
48 28
|
mgpbas |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( mulGrp ‘ 𝐹 ) ) |
55 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐹 ) ) = ( .g ‘ ( mulGrp ‘ 𝐹 ) ) |
56 |
54 55 5
|
mhmmulg |
⊢ ( ( 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ∧ 𝑃 ∈ ℕ0 ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
57 |
50 53 31 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
58 |
7
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
60 |
57 59
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ 𝐴 ) ) |
61 |
|
eqid |
⊢ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) |
62 |
8 28 55 61 10 11 9
|
fermltlchr |
⊢ ( 𝜑 → ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
63 |
62
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
64 |
63 7
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = 𝐴 ) |
65 |
38 60 64
|
3eqtr2d |
⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = 𝐴 ) |
66 |
37 65
|
oveq12d |
⊢ ( 𝜑 → ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |
67 |
35 36 66
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |