Step |
Hyp |
Ref |
Expression |
1 |
|
ply1frcl.q |
⊢ 𝑄 = ran ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ne0i |
⊢ ( 𝑋 ∈ ran ( 𝑆 evalSub1 𝑅 ) → ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) |
3 |
2 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑄 → ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) |
4 |
|
rneq |
⊢ ( ( 𝑆 evalSub1 𝑅 ) = ∅ → ran ( 𝑆 evalSub1 𝑅 ) = ran ∅ ) |
5 |
|
rn0 |
⊢ ran ∅ = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( ( 𝑆 evalSub1 𝑅 ) = ∅ → ran ( 𝑆 evalSub1 𝑅 ) = ∅ ) |
7 |
6
|
necon3i |
⊢ ( ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ → ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) |
8 |
|
n0 |
⊢ ( ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) ) |
9 |
|
df-evls1 |
⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
10 |
9
|
dmmpossx |
⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) |
11 |
|
elfvdm |
⊢ ( 𝑒 ∈ ( evalSub1 ‘ 〈 𝑆 , 𝑅 〉 ) → 〈 𝑆 , 𝑅 〉 ∈ dom evalSub1 ) |
12 |
|
df-ov |
⊢ ( 𝑆 evalSub1 𝑅 ) = ( evalSub1 ‘ 〈 𝑆 , 𝑅 〉 ) |
13 |
11 12
|
eleq2s |
⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → 〈 𝑆 , 𝑅 〉 ∈ dom evalSub1 ) |
14 |
10 13
|
sselid |
⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → 〈 𝑆 , 𝑅 〉 ∈ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
16 |
15
|
pweqd |
⊢ ( 𝑠 = 𝑆 → 𝒫 ( Base ‘ 𝑠 ) = 𝒫 ( Base ‘ 𝑆 ) ) |
17 |
16
|
opeliunxp2 |
⊢ ( 〈 𝑆 , 𝑅 〉 ∈ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) ↔ ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
18 |
14 17
|
sylib |
⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
19 |
18
|
exlimiv |
⊢ ( ∃ 𝑒 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
20 |
8 19
|
sylbi |
⊢ ( ( 𝑆 evalSub1 𝑅 ) ≠ ∅ → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
21 |
3 7 20
|
3syl |
⊢ ( 𝑋 ∈ 𝑄 → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |