| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1lmod.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
| 3 |
2
|
psr1lmod |
⊢ ( 𝑅 ∈ Ring → ( PwSer1 ‘ 𝑅 ) ∈ LMod ) |
| 4 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 6 |
4 5
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 |
4 2 5
|
ply1lss |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 8 |
6 7
|
eqeltrrid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 9 |
1 2
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) = ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 11 |
9 10
|
lsslmod |
⊢ ( ( ( PwSer1 ‘ 𝑅 ) ∈ LMod ∧ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) → 𝑃 ∈ LMod ) |
| 12 |
3 8 11
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |