Step |
Hyp |
Ref |
Expression |
1 |
|
ply1lpir.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
3 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ Ring ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
6 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
7 |
5 6
|
lidlss |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑃 ) → 𝑖 ⊆ ( Base ‘ 𝑃 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → 𝑖 ⊆ ( Base ‘ 𝑃 ) ) |
9 |
|
eqid |
⊢ ( idlGen1p ‘ 𝑅 ) = ( idlGen1p ‘ 𝑅 ) |
10 |
1 9 6
|
ig1pcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) ∈ 𝑖 ) |
11 |
8 10
|
sseldd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝑃 ) ) |
12 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
13 |
1 9 6 12
|
ig1prsp |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) } ) ) |
14 |
|
sneq |
⊢ ( 𝑗 = ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) → { 𝑗 } = { ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) } ) |
15 |
14
|
fveq2d |
⊢ ( 𝑗 = ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) → ( ( RSpan ‘ 𝑃 ) ‘ { 𝑗 } ) = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) } ) ) |
16 |
15
|
rspceeqv |
⊢ ( ( ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ 𝑅 ) ‘ 𝑖 ) } ) ) → ∃ 𝑗 ∈ ( Base ‘ 𝑃 ) 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝑗 } ) ) |
17 |
11 13 16
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → ∃ 𝑗 ∈ ( Base ‘ 𝑃 ) 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝑗 } ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → 𝑃 ∈ Ring ) |
19 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑃 ) = ( LPIdeal ‘ 𝑃 ) |
20 |
19 12 5
|
islpidl |
⊢ ( 𝑃 ∈ Ring → ( 𝑖 ∈ ( LPIdeal ‘ 𝑃 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑃 ) 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝑗 } ) ) ) |
21 |
18 20
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → ( 𝑖 ∈ ( LPIdeal ‘ 𝑃 ) ↔ ∃ 𝑗 ∈ ( Base ‘ 𝑃 ) 𝑖 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝑗 } ) ) ) |
22 |
17 21
|
mpbird |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( LIdeal ‘ 𝑃 ) ) → 𝑖 ∈ ( LPIdeal ‘ 𝑃 ) ) |
23 |
22
|
ex |
⊢ ( 𝑅 ∈ DivRing → ( 𝑖 ∈ ( LIdeal ‘ 𝑃 ) → 𝑖 ∈ ( LPIdeal ‘ 𝑃 ) ) ) |
24 |
23
|
ssrdv |
⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑃 ) ⊆ ( LPIdeal ‘ 𝑃 ) ) |
25 |
19 6
|
islpir2 |
⊢ ( 𝑃 ∈ LPIR ↔ ( 𝑃 ∈ Ring ∧ ( LIdeal ‘ 𝑃 ) ⊆ ( LPIdeal ‘ 𝑃 ) ) ) |
26 |
4 24 25
|
sylanbrc |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ LPIR ) |