Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1val.2 |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
3 |
|
ply1bas.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
4 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
6 |
1 2 3
|
ply1bas |
⊢ 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
7
|
a1i |
⊢ ( 𝑅 ∈ Ring → 1o ∈ On ) |
9 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
10 |
4 5 6 8 9
|
mpllss |
⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( LSubSp ‘ ( 1o mPwSer 𝑅 ) ) ) |
11 |
|
eqidd |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
12 |
2
|
psr1val |
⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
13 |
|
0ss |
⊢ ∅ ⊆ ( 1o × 1o ) |
14 |
13
|
a1i |
⊢ ( 𝑅 ∈ Ring → ∅ ⊆ ( 1o × 1o ) ) |
15 |
4 12 14
|
opsrbas |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
16 |
|
ssv |
⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ⊆ V |
17 |
16
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) ⊆ V ) |
18 |
4 12 14
|
opsrplusg |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ 𝑆 ) ) |
19 |
18
|
oveqdr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
20 |
|
ovexd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) ∈ V ) |
21 |
4 12 14
|
opsrvsca |
⊢ ( 𝑅 ∈ Ring → ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) = ( ·𝑠 ‘ 𝑆 ) ) |
22 |
21
|
oveqdr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) |
23 |
4 8 9
|
psrsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( 1o mPwSer 𝑅 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 1o mPwSer 𝑅 ) ) ) ) |
25 |
4 12 14 8 9
|
opsrsca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
27 |
11 15 17 19 20 22 24 26
|
lsspropd |
⊢ ( 𝑅 ∈ Ring → ( LSubSp ‘ ( 1o mPwSer 𝑅 ) ) = ( LSubSp ‘ 𝑆 ) ) |
28 |
10 27
|
eleqtrd |
⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |