Metamath Proof Explorer


Theorem ply1lvec

Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)

Ref Expression
Hypotheses ply1lvec.p 𝑃 = ( Poly1𝑅 )
ply1lvec.r ( 𝜑𝑅 ∈ DivRing )
Assertion ply1lvec ( 𝜑𝑃 ∈ LVec )

Proof

Step Hyp Ref Expression
1 ply1lvec.p 𝑃 = ( Poly1𝑅 )
2 ply1lvec.r ( 𝜑𝑅 ∈ DivRing )
3 2 drngringd ( 𝜑𝑅 ∈ Ring )
4 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
5 3 4 syl ( 𝜑𝑃 ∈ LMod )
6 1 ply1sca ( 𝑅 ∈ DivRing → 𝑅 = ( Scalar ‘ 𝑃 ) )
7 2 6 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
8 7 2 eqeltrrd ( 𝜑 → ( Scalar ‘ 𝑃 ) ∈ DivRing )
9 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
10 9 islvec ( 𝑃 ∈ LVec ↔ ( 𝑃 ∈ LMod ∧ ( Scalar ‘ 𝑃 ) ∈ DivRing ) )
11 5 8 10 sylanbrc ( 𝜑𝑃 ∈ LVec )