Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1lvec.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
ply1lvec.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
Assertion | ply1lvec | ⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1lvec.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | ply1lvec.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
3 | 2 | drngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
5 | 3 4 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
6 | 1 | ply1sca | ⊢ ( 𝑅 ∈ DivRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
8 | 7 2 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) ∈ DivRing ) |
9 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
10 | 9 | islvec | ⊢ ( 𝑃 ∈ LVec ↔ ( 𝑃 ∈ LMod ∧ ( Scalar ‘ 𝑃 ) ∈ DivRing ) ) |
11 | 5 8 10 | sylanbrc | ⊢ ( 𝜑 → 𝑃 ∈ LVec ) |