Metamath Proof Explorer


Theorem ply1moncl

Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1moncl.p 𝑃 = ( Poly1𝑅 )
ply1moncl.x 𝑋 = ( var1𝑅 )
ply1moncl.n 𝑁 = ( mulGrp ‘ 𝑃 )
ply1moncl.e = ( .g𝑁 )
ply1moncl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1moncl ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ply1moncl.p 𝑃 = ( Poly1𝑅 )
2 ply1moncl.x 𝑋 = ( var1𝑅 )
3 ply1moncl.n 𝑁 = ( mulGrp ‘ 𝑃 )
4 ply1moncl.e = ( .g𝑁 )
5 ply1moncl.b 𝐵 = ( Base ‘ 𝑃 )
6 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
7 3 ringmgp ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd )
8 6 7 syl ( 𝑅 ∈ Ring → 𝑁 ∈ Mnd )
9 8 adantr ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑁 ∈ Mnd )
10 simpr ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 )
11 2 1 5 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
12 11 adantr ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑋𝐵 )
13 3 5 mgpbas 𝐵 = ( Base ‘ 𝑁 )
14 13 4 mulgnn0cl ( ( 𝑁 ∈ Mnd ∧ 𝐷 ∈ ℕ0𝑋𝐵 ) → ( 𝐷 𝑋 ) ∈ 𝐵 )
15 9 10 12 14 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 𝑋 ) ∈ 𝐵 )