Step |
Hyp |
Ref |
Expression |
1 |
|
ply1moncl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1moncl.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
ply1moncl.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
4 |
|
ply1moncl.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
5 |
|
ply1moncl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
6 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
7 |
3
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑁 ∈ Mnd ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑁 ∈ Mnd ) |
10 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
11 |
2 1 5
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
13 |
3 5
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑁 ) |
14 |
13 4
|
mulgnn0cl |
⊢ ( ( 𝑁 ∈ Mnd ∧ 𝐷 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
15 |
9 10 12 14
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |