Step |
Hyp |
Ref |
Expression |
1 |
|
ply1moneq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1moneq.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
ply1moneq.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
4 |
|
ply1moneq.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
ply1moneq.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
6 |
|
ply1moneq.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
11 |
1 2 3 8 5 9 10
|
coe1mon |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
12 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ V ) |
13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
14 |
12 13
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
15 |
11 14
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
16 |
1 2 3 8 6 9 10
|
coe1mon |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
17 |
12 13
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
18 |
16 17
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
19 |
15 18
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) ↔ if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
20 |
10 9
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
23 |
|
ifnebib |
⊢ ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) → ( if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ↔ ( 𝑘 = 𝑀 ↔ 𝑘 = 𝑁 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝑀 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑘 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ↔ ( 𝑘 = 𝑀 ↔ 𝑘 = 𝑁 ) ) ) |
25 |
19 24
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) ↔ ( 𝑘 = 𝑀 ↔ 𝑘 = 𝑁 ) ) ) |
26 |
25
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑘 = 𝑀 ↔ 𝑘 = 𝑁 ) ) ) |
27 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
29 |
1 2 27 3 28
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
30 |
8 5 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
31 |
1 2 27 3 28
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
32 |
8 6 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) = ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) |
34 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) |
35 |
1 28 33 34
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) ↔ ( 𝑀 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ) ) |
36 |
8 30 32 35
|
syl3anc |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ ( 𝑀 ↑ 𝑋 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝑘 ) ↔ ( 𝑀 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ) ) |
37 |
5 6
|
eqelbid |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 ( 𝑘 = 𝑀 ↔ 𝑘 = 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |
38 |
26 36 37
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ↔ 𝑀 = 𝑁 ) ) |