| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1mpl1.m | ⊢ 𝑀  =  ( 1o  mPoly  𝑅 ) | 
						
							| 2 |  | ply1mpl1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | ply1mpl1.o | ⊢  1   =  ( 1r ‘ 𝑃 ) | 
						
							| 4 |  | eqidd | ⊢ ( ⊤  →  ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 6 | 2 5 | ply1bas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 7 | 1 | fveq2i | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 8 | 6 7 | eqtr4i | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑀 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑀 ) ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 11 | 2 1 10 | ply1mulr | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑀 ) | 
						
							| 12 | 11 | a1i | ⊢ ( ⊤  →  ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑀 ) ) | 
						
							| 13 | 12 | oveqdr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ∧  𝑦  ∈  ( Base ‘ 𝑃 ) ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 14 | 4 9 13 | rngidpropd | ⊢ ( ⊤  →  ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑀 ) ) | 
						
							| 15 | 14 | mptru | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑀 ) | 
						
							| 16 | 3 15 | eqtri | ⊢  1   =  ( 1r ‘ 𝑀 ) |