Step |
Hyp |
Ref |
Expression |
1 |
|
ply1domn.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
1
|
ply1nz |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |
3 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
6 |
4 5
|
nzrnz |
⊢ ( 𝑃 ∈ NzRing → ( 1r ‘ 𝑃 ) ≠ ( 0g ‘ 𝑃 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( 1r ‘ 𝑃 ) ≠ ( 0g ‘ 𝑃 ) ) |
8 |
|
ifeq1 |
⊢ ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 1o × { 0 } ) , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
9 |
|
ifid |
⊢ if ( 𝑦 = ( 1o × { 0 } ) , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) |
10 |
8 9
|
eqtrdi |
⊢ ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
11 |
10
|
ralrimivw |
⊢ ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
13 |
|
eqid |
⊢ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } = { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
16 |
12 1 4
|
ply1mpl1 |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) |
17 |
|
1on |
⊢ 1o ∈ On |
18 |
17
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → 1o ∈ On ) |
19 |
12 13 14 15 16 18 3
|
mpl1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
20 |
12 1 5
|
ply1mpl0 |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
21 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
22 |
3 21
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → 𝑅 ∈ Grp ) |
23 |
12 13 14 20 18 22
|
mpl0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( 0g ‘ 𝑃 ) = ( { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
24 |
|
fconstmpt |
⊢ ( { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) |
25 |
23 24
|
eqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ) |
26 |
19 25
|
eqeq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) ↔ ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ) ) |
27 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
28 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
29 |
27 28
|
ifex |
⊢ if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V |
30 |
29
|
rgenw |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V |
31 |
|
mpteqb |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
32 |
30 31
|
ax-mp |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
33 |
26 32
|
bitrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } if ( 𝑦 = ( 1o × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
34 |
11 33
|
syl5ibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) ) ) |
35 |
34
|
necon3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( ( 1r ‘ 𝑃 ) ≠ ( 0g ‘ 𝑃 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
36 |
7 35
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
37 |
15 14
|
isnzr |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
38 |
3 36 37
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ NzRing ) → 𝑅 ∈ NzRing ) |
39 |
38
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ NzRing → 𝑅 ∈ NzRing ) ) |
40 |
2 39
|
impbid2 |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing ) ) |