Metamath Proof Explorer


Theorem ply1opprmul

Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1opprmul.y 𝑌 = ( Poly1𝑅 )
ply1opprmul.s 𝑆 = ( oppr𝑅 )
ply1opprmul.z 𝑍 = ( Poly1𝑆 )
ply1opprmul.t · = ( .r𝑌 )
ply1opprmul.u = ( .r𝑍 )
ply1opprmul.b 𝐵 = ( Base ‘ 𝑌 )
Assertion ply1opprmul ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐺 · 𝐹 ) )

Proof

Step Hyp Ref Expression
1 ply1opprmul.y 𝑌 = ( Poly1𝑅 )
2 ply1opprmul.s 𝑆 = ( oppr𝑅 )
3 ply1opprmul.z 𝑍 = ( Poly1𝑆 )
4 ply1opprmul.t · = ( .r𝑌 )
5 ply1opprmul.u = ( .r𝑍 )
6 ply1opprmul.b 𝐵 = ( Base ‘ 𝑌 )
7 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
8 1 6 ply1bascl ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )
9 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
10 eqid ( Base ‘ ( PwSer1𝑅 ) ) = ( Base ‘ ( PwSer1𝑅 ) )
11 9 10 psr1bascl ( 𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
12 8 11 syl ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
13 1 6 ply1bascl ( 𝐺𝐵𝐺 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )
14 9 10 psr1bascl ( 𝐺 ∈ ( Base ‘ ( PwSer1𝑅 ) ) → 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
15 13 14 syl ( 𝐺𝐵𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
16 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
17 eqid ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 )
18 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
19 1 18 4 ply1mulr · = ( .r ‘ ( 1o mPoly 𝑅 ) )
20 18 16 19 mplmulr · = ( .r ‘ ( 1o mPwSer 𝑅 ) )
21 eqid ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 )
22 3 21 5 ply1mulr = ( .r ‘ ( 1o mPoly 𝑆 ) )
23 21 17 22 mplmulr = ( .r ‘ ( 1o mPwSer 𝑆 ) )
24 eqid ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) )
25 16 2 17 20 23 24 psropprmul ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) → ( 𝐹 𝐺 ) = ( 𝐺 · 𝐹 ) )
26 7 12 15 25 syl3an ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐺 · 𝐹 ) )