Step |
Hyp |
Ref |
Expression |
1 |
|
ply1opprmul.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1opprmul.s |
⊢ 𝑆 = ( oppr ‘ 𝑅 ) |
3 |
|
ply1opprmul.z |
⊢ 𝑍 = ( Poly1 ‘ 𝑆 ) |
4 |
|
ply1opprmul.t |
⊢ · = ( .r ‘ 𝑌 ) |
5 |
|
ply1opprmul.u |
⊢ ∙ = ( .r ‘ 𝑍 ) |
6 |
|
ply1opprmul.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
7 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
8 |
1 6
|
ply1bascl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
9 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
11 |
9 10
|
psr1bascl |
⊢ ( 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
12 |
8 11
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
13 |
1 6
|
ply1bascl |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
14 |
9 10
|
psr1bascl |
⊢ ( 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
16 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
17 |
|
eqid |
⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) |
18 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
19 |
1 18 4
|
ply1mulr |
⊢ · = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
20 |
18 16 19
|
mplmulr |
⊢ · = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
21 |
|
eqid |
⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) |
22 |
3 21 5
|
ply1mulr |
⊢ ∙ = ( .r ‘ ( 1o mPoly 𝑆 ) ) |
23 |
21 17 22
|
mplmulr |
⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑆 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
25 |
16 2 17 20 23 24
|
psropprmul |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |
26 |
7 12 15 25
|
syl3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |