| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1plusg.y | ⊢ 𝑌  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1plusg.s | ⊢ 𝑆  =  ( 1o  mPoly  𝑅 ) | 
						
							| 3 |  | ply1plusg.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 4 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 6 | 2 4 5 | mplplusg | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( PwSer1 ‘ 𝑅 )  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( +g ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 9 | 7 4 8 | psr1plusg | ⊢ ( +g ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( +g ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 10 |  | fvex | ⊢ ( Base ‘ ( 1o  mPoly  𝑅 ) )  ∈  V | 
						
							| 11 | 1 7 | ply1val | ⊢ 𝑌  =  ( ( PwSer1 ‘ 𝑅 )  ↾s  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 12 | 11 8 | ressplusg | ⊢ ( ( Base ‘ ( 1o  mPoly  𝑅 ) )  ∈  V  →  ( +g ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 13 | 10 12 | ax-mp | ⊢ ( +g ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( +g ‘ 𝑌 ) | 
						
							| 14 | 6 9 13 | 3eqtr2i | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑌 ) | 
						
							| 15 | 3 14 | eqtr4i | ⊢  +   =  ( +g ‘ 𝑆 ) |