Step |
Hyp |
Ref |
Expression |
1 |
|
ply1baspropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
ply1baspropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
3 |
|
ply1baspropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
4 |
1 2 3
|
psrplusgpropd |
⊢ ( 𝜑 → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) ) |
5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
6 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
7 |
|
eqid |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
8 |
5 6 7
|
mplplusg |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) |
10 |
|
eqid |
⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) |
11 |
|
eqid |
⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
12 |
9 10 11
|
mplplusg |
⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) |
13 |
4 8 12
|
3eqtr4g |
⊢ ( 𝜑 → ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) ) |
14 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) |
16 |
14 5 15
|
ply1plusg |
⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
17 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
18 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) |
19 |
17 9 18
|
ply1plusg |
⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
20 |
13 16 19
|
3eqtr4g |
⊢ ( 𝜑 → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) ) |