Step |
Hyp |
Ref |
Expression |
1 |
|
ply1rem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1rem.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1rem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
ply1rem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
ply1rem.m |
⊢ − = ( -g ‘ 𝑃 ) |
6 |
|
ply1rem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
|
ply1rem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) |
8 |
|
ply1rem.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
9 |
|
ply1rem.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
10 |
|
ply1rem.2 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
11 |
|
ply1rem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
12 |
|
ply1rem.u |
⊢ 𝑈 = ( Monic1p ‘ 𝑅 ) |
13 |
|
ply1rem.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
14 |
|
ply1rem.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
15 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
16 |
9 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
17 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
19 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
21 |
4 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
22 |
16 21
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
23 |
1 6 3 2
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |
24 |
16 23
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |
25 |
24 11
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑁 ) ∈ 𝐵 ) |
26 |
2 5
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐴 ‘ 𝑁 ) ∈ 𝐵 ) → ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ∈ 𝐵 ) |
27 |
20 22 25 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ∈ 𝐵 ) |
28 |
7 27
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
29 |
7
|
fveq2i |
⊢ ( 𝐷 ‘ 𝐺 ) = ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) |
30 |
13 1 2
|
deg1xrcl |
⊢ ( ( 𝐴 ‘ 𝑁 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ* ) |
31 |
25 30
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ* ) |
32 |
|
0xr |
⊢ 0 ∈ ℝ* |
33 |
32
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
34 |
|
1re |
⊢ 1 ∈ ℝ |
35 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
36 |
34 35
|
mp1i |
⊢ ( 𝜑 → 1 ∈ ℝ* ) |
37 |
13 1 3 6
|
deg1sclle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ 𝐾 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) ≤ 0 ) |
38 |
16 11 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) ≤ 0 ) |
39 |
|
0lt1 |
⊢ 0 < 1 |
40 |
39
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
41 |
31 33 36 38 40
|
xrlelttrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) < 1 ) |
42 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
43 |
42 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
44 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
45 |
43 44
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
46 |
22 45
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝐷 ‘ 𝑋 ) ) |
48 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
49 |
13 1 4 42 44
|
deg1pw |
⊢ ( ( 𝑅 ∈ NzRing ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 1 ) |
50 |
9 48 49
|
sylancl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 1 ) |
51 |
47 50
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑋 ) = 1 ) |
52 |
41 51
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐴 ‘ 𝑁 ) ) < ( 𝐷 ‘ 𝑋 ) ) |
53 |
1 13 16 2 5 22 25 52
|
deg1sub |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) = ( 𝐷 ‘ 𝑋 ) ) |
54 |
29 53
|
syl5eq |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = ( 𝐷 ‘ 𝑋 ) ) |
55 |
54 51
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = 1 ) |
56 |
55 48
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
58 |
13 1 57 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ≠ ( 0g ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
59 |
16 28 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ≠ ( 0g ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
60 |
56 59
|
mpbird |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
61 |
55
|
fveq2d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ 1 ) ) |
62 |
7
|
fveq2i |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) |
63 |
62
|
fveq1i |
⊢ ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = ( ( coe1 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 1 ) |
64 |
48
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
65 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
66 |
1 2 5 65
|
coe1subfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐴 ‘ 𝑁 ) ∈ 𝐵 ) ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) ) ) |
67 |
16 22 25 64 66
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 1 ) = ( ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) ) ) |
68 |
63 67
|
syl5eq |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 1 ) = ( ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) ) ) |
69 |
46
|
oveq2d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 𝑋 ) ) |
70 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ NzRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
71 |
9 70
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
73 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 𝑋 ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑋 ) ) |
74 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
75 |
16 74
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
76 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
77 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
78 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
79 |
2 76 77 78
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑋 ) = 𝑋 ) |
80 |
75 22 79
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑋 ) = 𝑋 ) |
81 |
69 73 80
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 𝑋 ) |
82 |
81
|
fveq2d |
⊢ ( 𝜑 → ( coe1 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( coe1 ‘ 𝑋 ) ) |
83 |
82
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ) |
84 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
85 |
3 84
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
86 |
16 85
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
87 |
14 3 1 4 77 42 44
|
coe1tmfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ 𝐾 ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
88 |
16 86 64 87
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
89 |
83 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑋 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
90 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
91 |
1 6 3 90
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) ) |
92 |
16 11 91
|
syl2anc |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) ) |
93 |
92
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) ‘ 1 ) ) |
94 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
95 |
|
neeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≠ 0 ↔ 1 ≠ 0 ) ) |
96 |
94 95
|
mpbiri |
⊢ ( 𝑥 = 1 → 𝑥 ≠ 0 ) |
97 |
|
ifnefalse |
⊢ ( 𝑥 ≠ 0 → if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
98 |
96 97
|
syl |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
99 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) |
100 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
101 |
98 99 100
|
fvmpt |
⊢ ( 1 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) |
102 |
48 101
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑁 , ( 0g ‘ 𝑅 ) ) ) ‘ 1 ) = ( 0g ‘ 𝑅 ) |
103 |
93 102
|
eqtrdi |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) |
104 |
89 103
|
oveq12d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) ) = ( ( 1r ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
105 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
106 |
16 105
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
107 |
3 90 65
|
grpsubid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐾 ) → ( ( 1r ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
108 |
106 86 107
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
109 |
104 108
|
eqtrd |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝑋 ) ‘ 1 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 1 ) ) = ( 1r ‘ 𝑅 ) ) |
110 |
61 68 109
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) = ( 1r ‘ 𝑅 ) ) |
111 |
1 2 57 13 12 84
|
ismon1p |
⊢ ( 𝐺 ∈ 𝑈 ↔ ( 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) = ( 1r ‘ 𝑅 ) ) ) |
112 |
28 60 110 111
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 ∈ 𝑈 ) |
113 |
7
|
fveq2i |
⊢ ( 𝑂 ‘ 𝐺 ) = ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) |
114 |
113
|
fveq1i |
⊢ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 𝑥 ) |
115 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑅 ∈ CRing ) |
116 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) |
117 |
8 4 3 1 2 115 116
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑥 ) = 𝑥 ) ) |
118 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑁 ∈ 𝐾 ) |
119 |
8 1 3 6 2 115 118 116
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑁 ) ) ‘ 𝑥 ) = 𝑁 ) ) |
120 |
8 1 3 2 115 116 117 119 5 65
|
evl1subd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 𝑥 ) = ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) ) ) |
121 |
120
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) ) ‘ 𝑥 ) = ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) ) |
122 |
114 121
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) ) |
123 |
122
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) = 0 ) ) |
124 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑅 ∈ Grp ) |
125 |
3 14 65
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐾 ∧ 𝑁 ∈ 𝐾 ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
126 |
124 116 118 125
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑁 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
127 |
123 126
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
128 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑁 } ↔ 𝑥 = 𝑁 ) |
129 |
127 128
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ 𝑥 ∈ { 𝑁 } ) ) |
130 |
129
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ { 𝑁 } ) ) ) |
131 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
132 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
133 |
3
|
fvexi |
⊢ 𝐾 ∈ V |
134 |
133
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
135 |
8 1 131 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
136 |
10 135
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
137 |
2 132
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
138 |
136 137
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
139 |
138 28
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
140 |
131 3 132 9 134 139
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) : 𝐾 ⟶ 𝐾 ) |
141 |
140
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) |
142 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐺 ) Fn 𝐾 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ) ) ) |
143 |
141 142
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ) ) ) |
144 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑁 } ⊆ 𝐾 ) |
145 |
144
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑁 } → 𝑥 ∈ 𝐾 ) ) |
146 |
145
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑁 } ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ { 𝑁 } ) ) ) |
147 |
130 143 146
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) ↔ 𝑥 ∈ { 𝑁 } ) ) |
148 |
147
|
eqrdv |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑁 } ) |
149 |
112 55 148
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑈 ∧ ( 𝐷 ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑁 } ) ) |