| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1ring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 3 |
1 2
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 4 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
| 5 |
1 4 2
|
ply1subrg |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 6 |
3 5
|
eqeltrrid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 7 |
1 4
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 8 |
7
|
subrgring |
⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝑃 ∈ Ring ) |
| 9 |
6 8
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |