Step |
Hyp |
Ref |
Expression |
1 |
|
ply1lmod.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
3 |
2
|
psr1sca |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
4 |
|
fvex |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V |
5 |
1 2
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
6 |
|
eqid |
⊢ ( Scalar ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Scalar ‘ ( PwSer1 ‘ 𝑅 ) ) |
7 |
5 6
|
resssca |
⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V → ( Scalar ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Scalar ‘ 𝑃 ) ) |
8 |
4 7
|
ax-mp |
⊢ ( Scalar ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Scalar ‘ 𝑃 ) |
9 |
3 8
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |