Metamath Proof Explorer


Theorem ply1sca

Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis ply1lmod.p 𝑃 = ( Poly1𝑅 )
Assertion ply1sca ( 𝑅𝑉𝑅 = ( Scalar ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply1lmod.p 𝑃 = ( Poly1𝑅 )
2 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
3 2 psr1sca ( 𝑅𝑉𝑅 = ( Scalar ‘ ( PwSer1𝑅 ) ) )
4 fvex ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V
5 1 2 ply1val 𝑃 = ( ( PwSer1𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) )
6 eqid ( Scalar ‘ ( PwSer1𝑅 ) ) = ( Scalar ‘ ( PwSer1𝑅 ) )
7 5 6 resssca ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V → ( Scalar ‘ ( PwSer1𝑅 ) ) = ( Scalar ‘ 𝑃 ) )
8 4 7 ax-mp ( Scalar ‘ ( PwSer1𝑅 ) ) = ( Scalar ‘ 𝑃 )
9 3 8 eqtrdi ( 𝑅𝑉𝑅 = ( Scalar ‘ 𝑃 ) )