Metamath Proof Explorer


Theorem ply1scl0

Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p 𝑃 = ( Poly1𝑅 )
ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
ply1scl0.z 0 = ( 0g𝑅 )
ply1scl0.y 𝑌 = ( 0g𝑃 )
Assertion ply1scl0 ( 𝑅 ∈ Ring → ( 𝐴0 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 ply1scl.p 𝑃 = ( Poly1𝑅 )
2 ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
3 ply1scl0.z 0 = ( 0g𝑅 )
4 ply1scl0.y 𝑌 = ( 0g𝑃 )
5 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
6 5 fveq2d ( 𝑅 ∈ Ring → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
7 3 6 eqtrid ( 𝑅 ∈ Ring → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
8 7 fveq2d ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) )
9 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
10 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
11 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
12 2 9 10 11 ascl0 ( 𝑅 ∈ Ring → ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) = ( 0g𝑃 ) )
13 8 12 eqtrd ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 0g𝑃 ) )
14 13 4 eqtr4di ( 𝑅 ∈ Ring → ( 𝐴0 ) = 𝑌 )