Metamath Proof Explorer


Theorem ply1scl0

Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p 𝑃 = ( Poly1𝑅 )
ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
ply1scl0.z 0 = ( 0g𝑅 )
ply1scl0.y 𝑌 = ( 0g𝑃 )
Assertion ply1scl0 ( 𝑅 ∈ Ring → ( 𝐴0 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 ply1scl.p 𝑃 = ( Poly1𝑅 )
2 ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
3 ply1scl0.z 0 = ( 0g𝑅 )
4 ply1scl0.y 𝑌 = ( 0g𝑃 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 3 ring0cl ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) )
7 1 ply1sca2 ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 )
8 df-base Base = Slot 1
9 8 5 strfvi ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) )
10 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
11 eqid ( 1r𝑃 ) = ( 1r𝑃 )
12 2 7 9 10 11 asclval ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐴0 ) = ( 0 ( ·𝑠𝑃 ) ( 1r𝑃 ) ) )
13 6 12 syl ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 0 ( ·𝑠𝑃 ) ( 1r𝑃 ) ) )
14 fvi ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 )
15 14 fveq2d ( 𝑅 ∈ Ring → ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g𝑅 ) )
16 3 15 eqtr4id ( 𝑅 ∈ Ring → 0 = ( 0g ‘ ( I ‘ 𝑅 ) ) )
17 16 oveq1d ( 𝑅 ∈ Ring → ( 0 ( ·𝑠𝑃 ) ( 1r𝑃 ) ) = ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) ( 1r𝑃 ) ) )
18 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
19 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
20 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
21 20 11 ringidcl ( 𝑃 ∈ Ring → ( 1r𝑃 ) ∈ ( Base ‘ 𝑃 ) )
22 19 21 syl ( 𝑅 ∈ Ring → ( 1r𝑃 ) ∈ ( Base ‘ 𝑃 ) )
23 eqid ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ ( I ‘ 𝑅 ) )
24 20 7 10 23 4 lmod0vs ( ( 𝑃 ∈ LMod ∧ ( 1r𝑃 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) ( 1r𝑃 ) ) = 𝑌 )
25 18 22 24 syl2anc ( 𝑅 ∈ Ring → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) ( 1r𝑃 ) ) = 𝑌 )
26 13 17 25 3eqtrd ( 𝑅 ∈ Ring → ( 𝐴0 ) = 𝑌 )