Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1scl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
ply1scl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ply1scl0.y |
⊢ 𝑌 = ( 0g ‘ 𝑃 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
5 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
7 |
1
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
8 |
|
df-base |
⊢ Base = Slot 1 |
9 |
8 5
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
12 |
2 7 9 10 11
|
asclval |
⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
13 |
6 12
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
14 |
|
fvi |
⊢ ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 ) |
15 |
14
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
16 |
3 15
|
eqtr4id |
⊢ ( 𝑅 ∈ Ring → 0 = ( 0g ‘ ( I ‘ 𝑅 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑅 ∈ Ring → ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
18 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
19 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
21 |
20 11
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
22 |
19 21
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ ( I ‘ 𝑅 ) ) |
24 |
20 7 10 23 4
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
25 |
18 22 24
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
26 |
13 17 25
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = 𝑌 ) |