Metamath Proof Explorer


Theorem ply1scl1

Description: The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses ply1scl.p 𝑃 = ( Poly1𝑅 )
ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
ply1scl1.o 1 = ( 1r𝑅 )
ply1scl1.n 𝑁 = ( 1r𝑃 )
Assertion ply1scl1 ( 𝑅 ∈ Ring → ( 𝐴1 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 ply1scl.p 𝑃 = ( Poly1𝑅 )
2 ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
3 ply1scl1.o 1 = ( 1r𝑅 )
4 ply1scl1.n 𝑁 = ( 1r𝑃 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 3 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
7 1 ply1sca2 ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 )
8 df-base Base = Slot 1
9 8 5 strfvi ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) )
10 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
11 2 7 9 10 4 asclval ( 1 ∈ ( Base ‘ 𝑅 ) → ( 𝐴1 ) = ( 1 ( ·𝑠𝑃 ) 𝑁 ) )
12 6 11 syl ( 𝑅 ∈ Ring → ( 𝐴1 ) = ( 1 ( ·𝑠𝑃 ) 𝑁 ) )
13 fvi ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 )
14 13 fveq2d ( 𝑅 ∈ Ring → ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r𝑅 ) )
15 14 3 eqtr4di ( 𝑅 ∈ Ring → ( 1r ‘ ( I ‘ 𝑅 ) ) = 1 )
16 15 oveq1d ( 𝑅 ∈ Ring → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) 𝑁 ) = ( 1 ( ·𝑠𝑃 ) 𝑁 ) )
17 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
18 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
19 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
20 19 4 ringidcl ( 𝑃 ∈ Ring → 𝑁 ∈ ( Base ‘ 𝑃 ) )
21 18 20 syl ( 𝑅 ∈ Ring → 𝑁 ∈ ( Base ‘ 𝑃 ) )
22 eqid ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ ( I ‘ 𝑅 ) )
23 19 7 10 22 lmodvs1 ( ( 𝑃 ∈ LMod ∧ 𝑁 ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) 𝑁 ) = 𝑁 )
24 17 21 23 syl2anc ( 𝑅 ∈ Ring → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠𝑃 ) 𝑁 ) = 𝑁 )
25 12 16 24 3eqtr2d ( 𝑅 ∈ Ring → ( 𝐴1 ) = 𝑁 )