Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1scl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
ply1scl1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ply1scl1.n |
⊢ 𝑁 = ( 1r ‘ 𝑃 ) |
5 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
7 |
3 6
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → 1 = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
10 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
11 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
12 |
2 9 10 11
|
ascl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) = ( 1r ‘ 𝑃 ) ) |
13 |
8 12
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = 𝑁 ) |