| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1scl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | ply1scl1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | ply1scl1.n | ⊢ 𝑁  =  ( 1r ‘ 𝑃 ) | 
						
							| 5 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 7 | 3 6 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →   1   =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 10 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 11 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 12 | 2 9 10 11 | ascl1 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  𝑁 ) |