Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1scl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
ply1scl1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ply1scl1.n |
⊢ 𝑁 = ( 1r ‘ 𝑃 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
5 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
7 |
1
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
8 |
|
df-base |
⊢ Base = Slot 1 |
9 |
8 5
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
11 |
2 7 9 10 4
|
asclval |
⊢ ( 1 ∈ ( Base ‘ 𝑅 ) → ( 𝐴 ‘ 1 ) = ( 1 ( ·𝑠 ‘ 𝑃 ) 𝑁 ) ) |
12 |
6 11
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1 ( ·𝑠 ‘ 𝑃 ) 𝑁 ) ) |
13 |
|
fvi |
⊢ ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 ) |
14 |
13
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( I ‘ 𝑅 ) ) = 1 ) |
16 |
15
|
oveq1d |
⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑁 ) = ( 1 ( ·𝑠 ‘ 𝑃 ) 𝑁 ) ) |
17 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
18 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
20 |
19 4
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ ( Base ‘ 𝑃 ) ) |
21 |
18 20
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑁 ∈ ( Base ‘ 𝑃 ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ ( I ‘ 𝑅 ) ) |
23 |
19 7 10 22
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑁 ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑁 ) = 𝑁 ) |
24 |
17 21 23
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) 𝑁 ) = 𝑁 ) |
25 |
12 16 24
|
3eqtr2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = 𝑁 ) |