| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1scl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | ply1scl1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | ply1scl1.n | ⊢ 𝑁  =  ( 1r ‘ 𝑃 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 5 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 7 | 1 | ply1sca2 | ⊢ (  I  ‘ 𝑅 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 8 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 9 | 8 5 | strfvi | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ (  I  ‘ 𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 11 | 2 7 9 10 4 | asclval | ⊢ (  1   ∈  ( Base ‘ 𝑅 )  →  ( 𝐴 ‘  1  )  =  (  1  (  ·𝑠  ‘ 𝑃 ) 𝑁 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  (  1  (  ·𝑠  ‘ 𝑃 ) 𝑁 ) ) | 
						
							| 13 |  | fvi | ⊢ ( 𝑅  ∈  Ring  →  (  I  ‘ 𝑅 )  =  𝑅 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ (  I  ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 15 | 14 3 | eqtr4di | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ (  I  ‘ 𝑅 ) )  =   1  ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ (  I  ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝑃 ) 𝑁 )  =  (  1  (  ·𝑠  ‘ 𝑃 ) 𝑁 ) ) | 
						
							| 17 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 18 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 20 | 19 4 | ringidcl | ⊢ ( 𝑃  ∈  Ring  →  𝑁  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 | 18 20 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑁  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 1r ‘ (  I  ‘ 𝑅 ) )  =  ( 1r ‘ (  I  ‘ 𝑅 ) ) | 
						
							| 23 | 19 7 10 22 | lmodvs1 | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝑁  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 1r ‘ (  I  ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝑃 ) 𝑁 )  =  𝑁 ) | 
						
							| 24 | 17 21 23 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ (  I  ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝑃 ) 𝑁 )  =  𝑁 ) | 
						
							| 25 | 12 16 24 | 3eqtr2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  𝑁 ) |