Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1sclcl
Metamath Proof Explorer
Description: The value of the algebra scalars function for (univariate)
polynomials applied to a scalar results in a constant polynomial.
(Contributed by AV , 27-Nov-2019)
Ref
Expression
Hypotheses
ply1scl.p
⊢ 𝑃 = ( Poly1 ‘ 𝑅 )
ply1scl.a
⊢ 𝐴 = ( algSc ‘ 𝑃 )
coe1scl.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
ply1sclf.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
Assertion
ply1sclcl
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
ply1scl.p
⊢ 𝑃 = ( Poly1 ‘ 𝑅 )
2
ply1scl.a
⊢ 𝐴 = ( algSc ‘ 𝑃 )
3
coe1scl.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
4
ply1sclf.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
5
1 2 3 4
ply1sclf
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 )
6
5
ffvelrnda
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐵 )