Metamath Proof Explorer


Theorem ply1sclcl

Description: The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses ply1scl.p 𝑃 = ( Poly1𝑅 )
ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
coe1scl.k 𝐾 = ( Base ‘ 𝑅 )
ply1sclf.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1sclcl ( ( 𝑅 ∈ Ring ∧ 𝑆𝐾 ) → ( 𝐴𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ply1scl.p 𝑃 = ( Poly1𝑅 )
2 ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
3 coe1scl.k 𝐾 = ( Base ‘ 𝑅 )
4 ply1sclf.b 𝐵 = ( Base ‘ 𝑃 )
5 1 2 3 4 ply1sclf ( 𝑅 ∈ Ring → 𝐴 : 𝐾𝐵 )
6 5 ffvelrnda ( ( 𝑅 ∈ Ring ∧ 𝑆𝐾 ) → ( 𝐴𝑆 ) ∈ 𝐵 )