Database BASIC LINEAR ALGEBRA Abstract multivariate polynomials Univariate polynomials ply1sclcl  
				
		 
		
			
		 
		Description:   The value of the algebra scalar lifting function for (univariate)
           polynomials applied to a scalar results in a constant polynomial.
           (Contributed by AV , 27-Nov-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ply1scl.p ⊢  𝑃   =  ( Poly1  ‘ 𝑅  )  
					
						ply1scl.a ⊢  𝐴   =  ( algSc ‘ 𝑃  )  
					
						coe1scl.k ⊢  𝐾   =  ( Base ‘ 𝑅  )  
					
						ply1sclf.b ⊢  𝐵   =  ( Base ‘ 𝑃  )  
				
					Assertion 
					ply1sclcl ⊢   ( ( 𝑅   ∈  Ring  ∧  𝑆   ∈  𝐾  )  →  ( 𝐴  ‘ 𝑆  )  ∈  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ply1scl.p ⊢  𝑃   =  ( Poly1  ‘ 𝑅  )  
						
							2 
								
							 
							ply1scl.a ⊢  𝐴   =  ( algSc ‘ 𝑃  )  
						
							3 
								
							 
							coe1scl.k ⊢  𝐾   =  ( Base ‘ 𝑅  )  
						
							4 
								
							 
							ply1sclf.b ⊢  𝐵   =  ( Base ‘ 𝑃  )  
						
							5 
								1  2  3  4 
							 
							ply1sclf ⊢  ( 𝑅   ∈  Ring  →  𝐴  : 𝐾  ⟶ 𝐵  )  
						
							6 
								5 
							 
							ffvelcdmda ⊢  ( ( 𝑅   ∈  Ring  ∧  𝑆   ∈  𝐾  )  →  ( 𝐴  ‘ 𝑆  )  ∈  𝐵  )