Description: A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | 1 | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) | 
| 6 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) | 
| 7 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) | 
| 8 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 9 | 8 3 | strfvi | ⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) | 
| 10 | 2 5 6 7 9 4 | asclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |