Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1scl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
ply1sclid.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
5 |
1 2 3 4
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
6 |
5
|
fveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 0 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) ) |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) = 𝑋 ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) |
10 |
8 9
|
fvmptg |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
11 |
7 10
|
mpan |
⊢ ( 𝑋 ∈ 𝐾 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = 𝑋 ) |
13 |
6 12
|
eqtr2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝑋 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 0 ) ) |