| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1scl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | ply1scl0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | ply1scl0.y | ⊢ 𝑌  =  ( 0g ‘ 𝑃 ) | 
						
							| 5 |  | ply1scln0.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 7 | 1 2 5 6 | ply1sclf1 | ⊢ ( 𝑅  ∈  Ring  →  𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  𝑋  ∈  𝐾 ) | 
						
							| 10 | 5 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐾 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →   0   ∈  𝐾 ) | 
						
							| 12 |  | f1fveq | ⊢ ( ( 𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 )  ∧  ( 𝑋  ∈  𝐾  ∧   0   ∈  𝐾 ) )  →  ( ( 𝐴 ‘ 𝑋 )  =  ( 𝐴 ‘  0  )  ↔  𝑋  =   0  ) ) | 
						
							| 13 | 8 9 11 12 | syl12anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝐴 ‘ 𝑋 )  =  ( 𝐴 ‘  0  )  ↔  𝑋  =   0  ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝐴 ‘ 𝑋 )  =  ( 𝐴 ‘  0  )  →  𝑋  =   0  ) ) | 
						
							| 15 | 14 | necon3d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ≠   0   →  ( 𝐴 ‘ 𝑋 )  ≠  ( 𝐴 ‘  0  ) ) ) | 
						
							| 16 | 15 | 3impia | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾  ∧  𝑋  ≠   0  )  →  ( 𝐴 ‘ 𝑋 )  ≠  ( 𝐴 ‘  0  ) ) | 
						
							| 17 | 1 2 3 4 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  0  )  =  𝑌 ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾  ∧  𝑋  ≠   0  )  →  ( 𝐴 ‘  0  )  =  𝑌 ) | 
						
							| 19 | 16 18 | neeqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾  ∧  𝑋  ≠   0  )  →  ( 𝐴 ‘ 𝑋 )  ≠  𝑌 ) |