| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1term.1 | ⊢ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 2 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆 )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 1 | ply1termlem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 4 | 2 3 | stoic3 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  𝑆  ⊆  ℂ ) | 
						
							| 6 |  | 0cnd | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  0  ∈  ℂ ) | 
						
							| 7 | 6 | snssd | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  { 0 }  ⊆  ℂ ) | 
						
							| 8 | 5 7 | unssd | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | simpl2 | ⊢ ( ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐴  ∈  𝑆 ) | 
						
							| 11 |  | elun1 | ⊢ ( 𝐴  ∈  𝑆  →  𝐴  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝐴  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 13 |  | ssun2 | ⊢ { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) | 
						
							| 14 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 15 | 14 | snss | ⊢ ( 0  ∈  ( 𝑆  ∪  { 0 } )  ↔  { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 16 | 13 15 | mpbir | ⊢ 0  ∈  ( 𝑆  ∪  { 0 } ) | 
						
							| 17 |  | ifcl | ⊢ ( ( 𝐴  ∈  ( 𝑆  ∪  { 0 } )  ∧  0  ∈  ( 𝑆  ∪  { 0 } ) )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 18 | 12 16 17 | sylancl | ⊢ ( ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 19 | 8 9 18 | elplyd | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 20 | 4 19 | eqeltrd | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  𝐹  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 21 |  | plyun0 | ⊢ ( Poly ‘ ( 𝑆  ∪  { 0 } ) )  =  ( Poly ‘ 𝑆 ) | 
						
							| 22 | 20 21 | eleqtrdi | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐴  ∈  𝑆  ∧  𝑁  ∈  ℕ0 )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) |