| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1term.1 | ⊢ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 4 | 2 3 | eleqtrdi | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 5 |  | fzss1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑁 ... 𝑁 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 𝑁 ... 𝑁 )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 7 |  | elfz1eq | ⊢ ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  →  𝑘  =  𝑁 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  𝑘  =  𝑁 ) | 
						
							| 9 |  | iftrue | ⊢ ( 𝑘  =  𝑁  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  =  𝐴 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  =  𝐴 ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 10 12 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 | 8 15 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | expcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 13 17 | mulcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 𝑁 ... 𝑁 ) )  →  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 19 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) )  →  ¬  𝑘  ∈  ( 𝑁 ... 𝑁 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ¬  𝑘  ∈  ( 𝑁 ... 𝑁 ) ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0zd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 23 |  | fzsn | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁 ... 𝑁 )  =  { 𝑁 } ) | 
						
							| 24 | 23 | eleq2d | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  ↔  𝑘  ∈  { 𝑁 } ) ) | 
						
							| 25 |  | elsn2g | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑘  ∈  { 𝑁 }  ↔  𝑘  =  𝑁 ) ) | 
						
							| 26 | 24 25 | bitrd | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  ↔  𝑘  =  𝑁 ) ) | 
						
							| 27 | 22 26 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  ↔  𝑘  =  𝑁 ) ) | 
						
							| 28 | 20 27 | mtbid | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ¬  𝑘  =  𝑁 ) | 
						
							| 29 | 28 | iffalsed | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  =  0 ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 32 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 33 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 35 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 36 | 31 34 35 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 37 | 36 | mul02d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 38 | 30 37 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... 𝑁 )  ∖  ( 𝑁 ... 𝑁 ) ) )  →  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 39 |  | fzfid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑁 )  ∈  Fin ) | 
						
							| 40 | 6 18 38 39 | fsumss | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 𝑁 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 41 | 2 | nn0zd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑁  ∈  ℤ ) | 
						
							| 42 | 31 2 | expcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 𝑧 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 43 | 11 42 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝑧 ↑ 𝑁 ) ) | 
						
							| 45 | 9 44 | oveq12d | ⊢ ( 𝑘  =  𝑁  →  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 46 | 45 | fsum1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 𝑁 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 47 | 41 43 46 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 𝑁 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 48 | 40 47 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 49 | 48 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) ) | 
						
							| 50 | 1 49 | eqtr4id | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) |