Step |
Hyp |
Ref |
Expression |
1 |
|
ply1asclunit.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝐹 ) |
2 |
|
ply1asclunit.2 |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
ply1asclunit.3 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
ply1asclunit.4 |
⊢ 0 = ( 0g ‘ 𝐹 ) |
5 |
|
ply1asclunit.5 |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
6 |
|
ply1unit.d |
⊢ 𝐷 = ( deg1 ‘ 𝐹 ) |
7 |
|
ply1unit.f |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝑃 ) ) |
8 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
9 |
8
|
crngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝐹 ∈ Ring ) |
11 |
1
|
ply1ring |
⊢ ( 𝐹 ∈ Ring → 𝑃 ∈ Ring ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
13 |
|
eqid |
⊢ ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( invr ‘ 𝑃 ) = ( invr ‘ 𝑃 ) |
15 |
13 14
|
unitinvcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Unit ‘ 𝑃 ) ) |
16 |
12 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Unit ‘ 𝑃 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
18 |
17 13
|
unitcl |
⊢ ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Unit ‘ 𝑃 ) → ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ) |
19 |
16 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
21 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
22 |
|
drngnzr |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ NzRing ) |
23 |
1
|
ply1nz |
⊢ ( 𝐹 ∈ NzRing → 𝑃 ∈ NzRing ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ NzRing ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝑃 ∈ NzRing ) |
26 |
13 20 25 16
|
unitnz |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ≠ ( 0g ‘ 𝑃 ) ) |
27 |
6 1 20 17
|
deg1nn0cl |
⊢ ( ( 𝐹 ∈ Ring ∧ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℕ0 ) |
28 |
10 19 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℕ0 ) |
29 |
28
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℝ ) |
30 |
28
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 0 ≤ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) |
31 |
29 30
|
jca |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ) |
32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝐶 ∈ ( Base ‘ 𝑃 ) ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝐶 ∈ ( Unit ‘ 𝑃 ) ) |
34 |
13 20 25 33
|
unitnz |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝐶 ≠ ( 0g ‘ 𝑃 ) ) |
35 |
6 1 20 17
|
deg1nn0cl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ∧ 𝐶 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐶 ) ∈ ℕ0 ) |
36 |
10 32 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐶 ) ∈ ℕ0 ) |
37 |
36
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐶 ) ∈ ℝ ) |
38 |
36
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 0 ≤ ( 𝐷 ‘ 𝐶 ) ) |
39 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
40 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
41 |
13 14 39 40
|
unitlinv |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) = ( 1r ‘ 𝑃 ) ) |
42 |
12 41
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) = ( 1r ‘ 𝑃 ) ) |
43 |
42
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) |
44 |
|
eqid |
⊢ ( RLReg ‘ 𝐹 ) = ( RLReg ‘ 𝐹 ) |
45 |
|
drngdomn |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Domn ) |
46 |
21 45
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Domn ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → 𝐹 ∈ Domn ) |
48 |
|
eqid |
⊢ ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) = ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) |
49 |
48 17 1 3
|
coe1fvalcl |
⊢ ( ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℕ0 ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∈ 𝐵 ) |
50 |
19 28 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∈ 𝐵 ) |
51 |
6 1 20 17 4 48
|
deg1ldg |
⊢ ( ( 𝐹 ∈ Ring ∧ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ≠ ( 0g ‘ 𝑃 ) ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ≠ 0 ) |
52 |
10 19 26 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ≠ 0 ) |
53 |
3 44 4
|
domnrrg |
⊢ ( ( 𝐹 ∈ Domn ∧ ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∈ 𝐵 ∧ ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ≠ 0 ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∈ ( RLReg ‘ 𝐹 ) ) |
54 |
47 50 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( coe1 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ‘ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∈ ( RLReg ‘ 𝐹 ) ) |
55 |
6 1 44 17 39 20 10 19 26 54 32 34
|
deg1mul2 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) + ( 𝐷 ‘ 𝐶 ) ) ) |
56 |
|
eqid |
⊢ ( Monic1p ‘ 𝐹 ) = ( Monic1p ‘ 𝐹 ) |
57 |
1 40 56 6
|
mon1pid |
⊢ ( 𝐹 ∈ NzRing → ( ( 1r ‘ 𝑃 ) ∈ ( Monic1p ‘ 𝐹 ) ∧ ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) ) |
58 |
57
|
simprd |
⊢ ( 𝐹 ∈ NzRing → ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) |
59 |
21 22 58
|
3syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) |
61 |
43 55 60
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) + ( 𝐷 ‘ 𝐶 ) ) = 0 ) |
62 |
|
add20 |
⊢ ( ( ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∧ ( ( 𝐷 ‘ 𝐶 ) ∈ ℝ ∧ 0 ≤ ( 𝐷 ‘ 𝐶 ) ) ) → ( ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) + ( 𝐷 ‘ 𝐶 ) ) = 0 ↔ ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) = 0 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) ) ) |
63 |
62
|
anassrs |
⊢ ( ( ( ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∧ ( 𝐷 ‘ 𝐶 ) ∈ ℝ ) ∧ 0 ≤ ( 𝐷 ‘ 𝐶 ) ) → ( ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) + ( 𝐷 ‘ 𝐶 ) ) = 0 ↔ ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) = 0 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) ) ) |
64 |
63
|
simplbda |
⊢ ( ( ( ( ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) ) ∧ ( 𝐷 ‘ 𝐶 ) ∈ ℝ ) ∧ 0 ≤ ( 𝐷 ‘ 𝐶 ) ) ∧ ( ( 𝐷 ‘ ( ( invr ‘ 𝑃 ) ‘ 𝐶 ) ) + ( 𝐷 ‘ 𝐶 ) ) = 0 ) → ( 𝐷 ‘ 𝐶 ) = 0 ) |
65 |
31 37 38 61 64
|
syl1111anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐷 ‘ 𝐶 ) = 0 ) |
66 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐹 ∈ Ring ) |
67 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐶 ∈ ( Base ‘ 𝑃 ) ) |
68 |
6 1 17
|
deg1xrcl |
⊢ ( 𝐶 ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ 𝐶 ) ∈ ℝ* ) |
69 |
7 68
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐶 ) ∈ ℝ* ) |
70 |
|
0xr |
⊢ 0 ∈ ℝ* |
71 |
|
xeqlelt |
⊢ ( ( ( 𝐷 ‘ 𝐶 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐶 ) = 0 ↔ ( ( 𝐷 ‘ 𝐶 ) ≤ 0 ∧ ¬ ( 𝐷 ‘ 𝐶 ) < 0 ) ) ) |
72 |
69 70 71
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐶 ) = 0 ↔ ( ( 𝐷 ‘ 𝐶 ) ≤ 0 ∧ ¬ ( 𝐷 ‘ 𝐶 ) < 0 ) ) ) |
73 |
72
|
simprbda |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → ( 𝐷 ‘ 𝐶 ) ≤ 0 ) |
74 |
6 1 17 2
|
deg1le0 |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝐷 ‘ 𝐶 ) ≤ 0 ↔ 𝐶 = ( 𝐴 ‘ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ) ) ) |
75 |
74
|
biimpa |
⊢ ( ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → 𝐶 = ( 𝐴 ‘ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ) ) |
76 |
66 67 73 75
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐶 = ( 𝐴 ‘ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ) ) |
77 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐹 ∈ Field ) |
78 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
79 |
|
eqid |
⊢ ( coe1 ‘ 𝐶 ) = ( coe1 ‘ 𝐶 ) |
80 |
79 17 1 3
|
coe1fvalcl |
⊢ ( ( 𝐶 ∈ ( Base ‘ 𝑃 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ∈ 𝐵 ) |
81 |
67 78 80
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ∈ 𝐵 ) |
82 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝜑 ) |
83 |
72
|
simplbda |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → ¬ ( 𝐷 ‘ 𝐶 ) < 0 ) |
84 |
6 1 20 17
|
deg1lt0 |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝐷 ‘ 𝐶 ) < 0 ↔ 𝐶 = ( 0g ‘ 𝑃 ) ) ) |
85 |
84
|
necon3bbid |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ) → ( ¬ ( 𝐷 ‘ 𝐶 ) < 0 ↔ 𝐶 ≠ ( 0g ‘ 𝑃 ) ) ) |
86 |
85
|
biimpa |
⊢ ( ( ( 𝐹 ∈ Ring ∧ 𝐶 ∈ ( Base ‘ 𝑃 ) ) ∧ ¬ ( 𝐷 ‘ 𝐶 ) < 0 ) → 𝐶 ≠ ( 0g ‘ 𝑃 ) ) |
87 |
66 67 83 86
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐶 ≠ ( 0g ‘ 𝑃 ) ) |
88 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → 𝐹 ∈ Ring ) |
89 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → 𝐶 ∈ ( Base ‘ 𝑃 ) ) |
90 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → ( 𝐷 ‘ 𝐶 ) ≤ 0 ) |
91 |
6 1 4 17 20 88 89 90
|
deg1le0eq0 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → ( 𝐶 = ( 0g ‘ 𝑃 ) ↔ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) = 0 ) ) |
92 |
91
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) → ( 𝐶 ≠ ( 0g ‘ 𝑃 ) ↔ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ≠ 0 ) ) |
93 |
92
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) ≤ 0 ) ∧ 𝐶 ≠ ( 0g ‘ 𝑃 ) ) → ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ≠ 0 ) |
94 |
82 73 87 93
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ≠ 0 ) |
95 |
1 2 3 4 77 81 94
|
ply1asclunit |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → ( 𝐴 ‘ ( ( coe1 ‘ 𝐶 ) ‘ 0 ) ) ∈ ( Unit ‘ 𝑃 ) ) |
96 |
76 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐷 ‘ 𝐶 ) = 0 ) → 𝐶 ∈ ( Unit ‘ 𝑃 ) ) |
97 |
65 96
|
impbida |
⊢ ( 𝜑 → ( 𝐶 ∈ ( Unit ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝐶 ) = 0 ) ) |