Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1val.2 |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
3 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = ( PwSer1 ‘ 𝑅 ) ) |
4 |
3 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = 𝑆 ) |
5 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1o mPoly 𝑟 ) = ( 1o mPoly 𝑅 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ ( 1o mPoly 𝑟 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
8 |
|
df-ply1 |
⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
9 |
|
ovex |
⊢ ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) |
12 |
|
ress0 |
⊢ ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ∅ |
13 |
11 12
|
eqtr4di |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
14 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) |
15 |
2 14
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝑆 = ∅ ) |
16 |
15
|
oveq1d |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
17 |
13 16
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
18 |
10 17
|
pm2.61i |
⊢ ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
19 |
1 18
|
eqtri |
⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |