Step |
Hyp |
Ref |
Expression |
1 |
|
ply1plusg.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1plusg.s |
⊢ 𝑆 = ( 1o mPoly 𝑅 ) |
3 |
|
ply1vscafval.n |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
4 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
6 |
2 4 5
|
mplvsca2 |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
7 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) |
9 |
7 4 8
|
psr1vsca |
⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
10 |
|
fvex |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V |
11 |
1 7
|
ply1val |
⊢ 𝑌 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
12 |
11 8
|
ressvsca |
⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V → ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ 𝑌 ) ) |
13 |
10 12
|
ax-mp |
⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ 𝑌 ) |
14 |
6 9 13
|
3eqtr2i |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑌 ) |
15 |
3 14
|
eqtr4i |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |