| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyaddlem.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyaddlem.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyaddlem.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | plyaddlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | plyaddlem.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 6 |  | plyaddlem.b | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 7 |  | plyaddlem.a2 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 8 |  | plyaddlem.b2 | ⊢ ( 𝜑  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 9 |  | plyaddlem.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 10 |  | plyaddlem.g | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 11 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 13 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V ) | 
						
							| 15 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V ) | 
						
							| 17 | 12 14 16 9 10 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 18 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∈  Fin ) | 
						
							| 19 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 21 | 20 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 23 | 22 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 24 | 21 23 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 25 | 19 24 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 26 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 28 | 27 23 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 29 | 19 28 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 30 | 18 25 29 | fsumadd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 31 | 5 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 32 | 6 | ffnd | ⊢ ( 𝜑  →  𝐵  Fn  ℕ0 ) | 
						
							| 33 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 35 |  | inidm | ⊢ ( ℕ0  ∩  ℕ0 )  =  ℕ0 | 
						
							| 36 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 37 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 38 | 31 32 34 34 35 36 37 | ofval | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  +  ( 𝐵 ‘ 𝑘 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 41 | 21 27 23 | adddird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴 ‘ 𝑘 )  +  ( 𝐵 ‘ 𝑘 ) )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 42 | 40 41 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 43 | 19 42 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  →  ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 44 | 43 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 45 | 3 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 46 | 4 3 | ifcld | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℕ0 ) | 
						
							| 47 | 46 | nn0zd | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ ) | 
						
							| 48 | 3 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 49 | 4 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 50 |  | max1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 51 | 48 49 50 | syl2anc | ⊢ ( 𝜑  →  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 52 |  | eluz2 | ⊢ ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ  ∧  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 53 | 45 47 51 52 | syl3anbrc | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 54 |  | fzss2 | ⊢ ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 57 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 58 | 57 24 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 59 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 61 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 62 | 61 19 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 64 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 65 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 66 | 3 65 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 67 | 66 64 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 68 |  | uzsplit | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 70 | 64 69 | eqtrid | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 71 | 3 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 72 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 73 |  | pncan | ⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 74 | 71 72 73 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  =  ( 0 ... 𝑀 ) ) | 
						
							| 76 | 75 | uneq1d | ⊢ ( 𝜑  →  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 77 | 70 76 | eqtrd | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ℕ0  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 79 | 63 78 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 80 |  | elun | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ↔  ( 𝑘  ∈  ( 0 ... 𝑀 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 81 | 79 80 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑀 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 82 | 81 | ord | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 83 | 60 82 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 84 | 5 | ffund | ⊢ ( 𝜑  →  Fun  𝐴 ) | 
						
							| 85 |  | ssun2 | ⊢ ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 86 | 85 70 | sseqtrrid | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ℕ0 ) | 
						
							| 87 | 5 | fdmd | ⊢ ( 𝜑  →  dom  𝐴  =  ℕ0 ) | 
						
							| 88 | 86 87 | sseqtrrd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  dom  𝐴 ) | 
						
							| 89 |  | funfvima2 | ⊢ ( ( Fun  𝐴  ∧  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  dom  𝐴 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 90 | 84 88 89 | syl2anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 92 | 83 91 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 93 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 94 | 92 93 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  { 0 } ) | 
						
							| 95 |  | elsni | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  { 0 }  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 97 | 96 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 98 | 62 23 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 99 | 98 | mul02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 100 | 97 99 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 101 | 56 58 100 18 | fsumss | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 102 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 103 |  | max2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 104 | 48 49 103 | syl2anc | ⊢ ( 𝜑  →  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 105 |  | eluz2 | ⊢ ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ  ∧  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 106 | 102 47 104 105 | syl3anbrc | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 107 |  | fzss2 | ⊢ ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 110 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 111 | 110 28 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 112 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 114 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 115 | 114 19 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 117 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 118 | 4 117 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 119 | 118 64 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 120 |  | uzsplit | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 121 | 119 120 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 122 | 64 121 | eqtrid | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 123 | 4 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 124 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 125 | 123 72 124 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 127 | 126 | uneq1d | ⊢ ( 𝜑  →  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 128 | 122 127 | eqtrd | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 129 | 128 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ℕ0  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 130 | 116 129 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑘  ∈  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 131 |  | elun | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ↔  ( 𝑘  ∈  ( 0 ... 𝑁 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 132 | 130 131 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 133 | 132 | ord | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 134 | 113 133 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 135 | 6 | ffund | ⊢ ( 𝜑  →  Fun  𝐵 ) | 
						
							| 136 |  | ssun2 | ⊢ ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 137 | 136 122 | sseqtrrid | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ℕ0 ) | 
						
							| 138 | 6 | fdmd | ⊢ ( 𝜑  →  dom  𝐵  =  ℕ0 ) | 
						
							| 139 | 137 138 | sseqtrrd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  dom  𝐵 ) | 
						
							| 140 |  | funfvima2 | ⊢ ( ( Fun  𝐵  ∧  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  dom  𝐵 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 141 | 135 139 140 | syl2anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 142 | 141 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 143 | 134 142 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 144 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 145 | 143 144 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  { 0 } ) | 
						
							| 146 |  | elsni | ⊢ ( ( 𝐵 ‘ 𝑘 )  ∈  { 0 }  →  ( 𝐵 ‘ 𝑘 )  =  0 ) | 
						
							| 147 | 145 146 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑘 )  =  0 ) | 
						
							| 148 | 147 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 149 | 115 23 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 150 | 149 | mul02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 151 | 148 150 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 152 | 109 111 151 18 | fsumss | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 153 | 101 152 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 154 | 30 44 153 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 155 | 154 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  +  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 156 | 17 155 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ( ( ( 𝐴  ∘f   +  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) |