Metamath Proof Explorer


Theorem plybss

Description: Reverse closure of the parameter S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plybss ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 df-ply Poly = ( 𝑥 ∈ 𝒫 ℂ ↦ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) } )
2 1 mptrcl ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ∈ 𝒫 ℂ )
3 2 elpwid ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ )