Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
2 |
|
plycj.2 |
⊢ 𝐺 = ( ( ∗ ∘ 𝐹 ) ∘ ∗ ) |
3 |
|
plycjlem.3 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
4 |
|
cjcl |
⊢ ( 𝑧 ∈ ℂ → ( ∗ ‘ 𝑧 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( ∗ ‘ 𝑧 ) ∈ ℂ ) |
6 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
7 |
6
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∗ : ℂ ⟶ ℂ ) |
8 |
7
|
feqmptd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∗ = ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ 𝑧 ) ) ) |
9 |
|
fzfid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
10 |
3
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
12 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
13 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
15 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
16 |
12 15
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
17 |
16
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
18 |
14 17
|
mulcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
19 |
9 18
|
fsumcl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
20 |
3 1
|
coeid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑧 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) → ( ∗ ‘ 𝑧 ) = ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) ) |
22 |
19 20 8 21
|
fmptco |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∗ ∘ 𝐹 ) = ( 𝑥 ∈ ℂ ↦ ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑥 = ( ∗ ‘ 𝑧 ) → ( 𝑥 ↑ 𝑘 ) = ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑥 = ( ∗ ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
25 |
24
|
sumeq2sdv |
⊢ ( 𝑥 = ( ∗ ‘ 𝑧 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑥 = ( ∗ ‘ 𝑧 ) → ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) = ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
27 |
5 8 22 26
|
fmptco |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ∗ ∘ 𝐹 ) ∘ ∗ ) = ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) ) |
28 |
2 27
|
eqtrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) ) |
29 |
|
fzfid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
30 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
31 |
30 12 13
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
32 |
|
expcl |
⊢ ( ( ( ∗ ‘ 𝑧 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ∈ ℂ ) |
33 |
5 12 32
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ∈ ℂ ) |
34 |
31 33
|
mulcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ∈ ℂ ) |
35 |
29 34
|
fsumcj |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ∗ ‘ ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
36 |
31 33
|
cjmuld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ∗ ‘ ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) · ( ∗ ‘ ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
37 |
|
fvco3 |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
38 |
30 12 37
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
39 |
|
cjexp |
⊢ ( ( ( ∗ ‘ 𝑧 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑧 ) ) ↑ 𝑘 ) ) |
40 |
5 12 39
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑧 ) ) ↑ 𝑘 ) ) |
41 |
|
cjcj |
⊢ ( 𝑧 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝑧 ) ) = 𝑧 ) |
42 |
41
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑧 ) ) = 𝑧 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝑧 ) ) ↑ 𝑘 ) = ( 𝑧 ↑ 𝑘 ) ) |
44 |
40 43
|
eqtr2d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑧 ↑ 𝑘 ) = ( ∗ ‘ ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) |
45 |
38 44
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) · ( ∗ ‘ ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) |
46 |
36 45
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ∗ ‘ ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) = ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
47 |
46
|
sumeq2dv |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ∗ ‘ ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
48 |
35 47
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( ( ∗ ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
50 |
28 49
|
eqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |