Metamath Proof Explorer


Theorem plycn

Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion plycn ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 eqid ( coeff ‘ 𝐹 ) = ( coeff ‘ 𝐹 )
2 eqid ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 )
3 1 2 coeid ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑧𝑘 ) ) ) )
4 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
5 4 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
6 5 a1i ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
7 fzfid ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0 ... ( deg ‘ 𝐹 ) ) ∈ Fin )
8 5 a1i ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
9 1 coef3 ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ )
10 elfznn0 ( 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑘 ∈ ℕ0 )
11 ffvelrn ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) ∈ ℂ )
12 9 10 11 syl2an ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) ∈ ℂ )
13 8 8 12 cnmptc ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
14 10 adantl ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑘 ∈ ℕ0 )
15 4 expcn ( 𝑘 ∈ ℕ0 → ( 𝑧 ∈ ℂ ↦ ( 𝑧𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
16 14 15 syl ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
17 4 mulcn · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
18 17 a1i ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) )
19 8 13 16 18 cnmpt12f ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑧𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
20 4 6 7 19 fsumcn ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 ) · ( 𝑧𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
21 3 20 eqeltrd ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) )
22 4 cncfcn1 ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
23 21 22 eleqtrrdi ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) )