| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyco.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyco.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyco.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 4 |  | plyco.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 5 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 8 | 6 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( coeff ‘ 𝐹 )  =  ( coeff ‘ 𝐹 ) | 
						
							| 10 |  | eqid | ⊢ ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) | 
						
							| 11 | 9 10 | coeid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  =  ( 𝑥  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( 𝑥 ↑ 𝑘 ) ) ) ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( 𝑥 ↑ 𝑘 ) ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑧 )  →  ( 𝑥 ↑ 𝑘 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑧 )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( 𝑥 ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 15 | 14 | sumeq2sdv | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑧 )  →  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( 𝑥 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 16 | 7 8 12 15 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 17 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 0 ... 𝑥 )  =  ( 0 ... 0 ) ) | 
						
							| 20 | 19 | sumeq1d | ⊢ ( 𝑥  =  0  →  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 21 | 20 | mpteq2dv | ⊢ ( 𝑥  =  0  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝑑  →  ( 0 ... 𝑥 )  =  ( 0 ... 𝑑 ) ) | 
						
							| 25 | 24 | sumeq1d | ⊢ ( 𝑥  =  𝑑  →  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 26 | 25 | mpteq2dv | ⊢ ( 𝑥  =  𝑑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( 0 ... 𝑥 )  =  ( 0 ... ( 𝑑  +  1 ) ) ) | 
						
							| 30 | 29 | sumeq1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 31 | 30 | mpteq2dv | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 32 | 31 | eleq1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( 0 ... 𝑥 )  =  ( 0 ... ( deg ‘ 𝐹 ) ) ) | 
						
							| 35 | 34 | sumeq1d | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) | 
						
							| 36 | 35 | mpteq2dv | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 38 | 37 | imbi2d | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑥 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 39 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 40 | 7 | exp0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 )  =  1 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  1 ) ) | 
						
							| 42 |  | plybss | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑆  ⊆  ℂ ) | 
						
							| 43 | 1 42 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 44 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 45 | 44 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ℂ ) | 
						
							| 46 | 43 45 | unssd | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 47 | 9 | coef | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 48 | 1 47 | syl | ⊢ ( 𝜑  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 49 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 50 |  | ffvelcdm | ⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  0  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 51 | 48 49 50 | sylancl | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 52 | 46 51 | sseldd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ∈  ℂ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ∈  ℂ ) | 
						
							| 54 | 53 | mulridd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  1 )  =  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 55 | 41 54 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) )  =  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 56 | 55 53 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) )  ∈  ℂ ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  =  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) | 
						
							| 59 | 57 58 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) | 
						
							| 60 | 59 | fsum1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) | 
						
							| 61 | 39 56 60 | sylancr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 0 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 0 ) ) ) | 
						
							| 62 | 61 55 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 63 | 62 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) ) | 
						
							| 64 |  | fconstmpt | ⊢ ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } )  =  ( 𝑧  ∈  ℂ  ↦  ( ( coeff ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 65 | 63 64 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } ) ) | 
						
							| 66 |  | plyconst | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ( ( coeff ‘ 𝐹 ) ‘ 0 )  ∈  ( 𝑆  ∪  { 0 } ) )  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 67 | 46 51 66 | syl2anc | ⊢ ( 𝜑  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 68 |  | plyun0 | ⊢ ( Poly ‘ ( 𝑆  ∪  { 0 } ) )  =  ( Poly ‘ 𝑆 ) | 
						
							| 69 | 67 68 | eleqtrdi | ⊢ ( 𝜑  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ 0 ) } )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 70 | 65 69 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 71 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ0  ∧  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 72 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 73 |  | peano2nn0 | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝑑  +  1 )  ∈  ℕ0 ) | 
						
							| 74 |  | ffvelcdm | ⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  ( 𝑑  +  1 )  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 75 | 48 73 74 | syl2an | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 76 |  | plyconst | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ∈  ( 𝑆  ∪  { 0 } ) )  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 77 | 72 75 76 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 78 | 77 68 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 79 |  | nn0p1nn | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝑑  +  1 )  ∈  ℕ ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) | 
						
							| 81 | 80 | mpteq2dv | ⊢ ( 𝑥  =  1  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) ) ) | 
						
							| 82 | 81 | eleq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 83 | 82 | imbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 84 |  | oveq2 | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) | 
						
							| 85 | 84 | mpteq2dv | ⊢ ( 𝑥  =  𝑑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 87 | 86 | imbi2d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) | 
						
							| 89 | 88 | mpteq2dv | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) | 
						
							| 90 | 89 | eleq1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 91 | 90 | imbi2d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑥 ) )  ∈  ( Poly ‘ 𝑆 ) )  ↔  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 92 | 7 | exp1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 93 | 92 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 94 | 93 8 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) )  =  𝐺 ) | 
						
							| 95 | 94 2 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 1 ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 96 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 97 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 98 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 99 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 100 | 96 97 98 99 | plymul | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 101 | 100 | expr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 102 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 103 | 102 | a1i | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ℂ  ∈  V ) | 
						
							| 104 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 )  ∈  V ) | 
						
							| 105 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑧  ∈  ℂ )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 106 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) ) ) | 
						
							| 107 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 108 | 103 104 105 106 107 | offval2 | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 109 |  | nnnn0 | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℕ0 ) | 
						
							| 110 | 109 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑧  ∈  ℂ )  →  𝑑  ∈  ℕ0 ) | 
						
							| 111 | 105 110 | expp1d | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) )  =  ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 112 | 111 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 )  ·  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 113 | 108 112 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) | 
						
							| 114 | 113 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 115 | 101 114 | sylibd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 116 | 115 | expcom | ⊢ ( 𝑑  ∈  ℕ  →  ( 𝜑  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 117 | 116 | a2d | ⊢ ( 𝑑  ∈  ℕ  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑑 ) )  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 118 | 83 87 91 91 95 117 | nnind | ⊢ ( ( 𝑑  +  1 )  ∈  ℕ  →  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 119 | 79 118 | syl | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 120 | 119 | impcom | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 121 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 122 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 123 | 78 120 121 122 | plymul | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 124 | 123 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ0  ∧  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 125 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ0  ∧  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 126 | 71 124 125 | plyadd | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈  ℕ0  ∧  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∘f   +  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 127 | 126 | expr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∘f   +  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 128 | 102 | a1i | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ℂ  ∈  V ) | 
						
							| 129 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  ∈  V | 
						
							| 130 | 129 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  ∈  V ) | 
						
							| 131 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  ∈  V ) | 
						
							| 132 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 133 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ∈  V ) | 
						
							| 134 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) )  ∈  V ) | 
						
							| 135 |  | fconstmpt | ⊢ ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  =  ( 𝑧  ∈  ℂ  ↦  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 136 | 135 | a1i | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  =  ( 𝑧  ∈  ℂ  ↦  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) ) ) | 
						
							| 137 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) | 
						
							| 138 | 128 133 134 136 137 | offval2 | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 139 | 128 130 131 132 138 | offval2 | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∘f   +  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  +  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) ) ) | 
						
							| 140 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑑  ∈  ℕ0 ) | 
						
							| 141 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 142 | 140 141 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑑  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 143 | 9 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) | 
						
							| 144 | 1 143 | syl | ⊢ ( 𝜑  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) | 
						
							| 145 | 144 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ ) | 
						
							| 146 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 147 |  | ffvelcdm | ⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 148 | 145 146 147 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 149 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 150 |  | expcl | ⊢ ( ( ( 𝐺 ‘ 𝑧 )  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 151 | 149 146 150 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 152 | 148 151 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 153 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑑  +  1 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  =  ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) ) | 
						
							| 154 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑑  +  1 )  →  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 )  =  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) | 
						
							| 155 | 153 154 | oveq12d | ⊢ ( 𝑘  =  ( 𝑑  +  1 )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) | 
						
							| 156 | 142 152 155 | fsump1 | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  +  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) ) | 
						
							| 157 | 156 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) )  +  ( ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) ) ) | 
						
							| 158 | 139 157 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∘f   +  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) ) ) | 
						
							| 159 | 158 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∘f   +  ( ( ℂ  ×  { ( ( coeff ‘ 𝐹 ) ‘ ( 𝑑  +  1 ) ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐺 ‘ 𝑧 ) ↑ ( 𝑑  +  1 ) ) ) ) )  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 160 | 127 159 | sylibd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 161 | 160 | expcom | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝜑  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 162 | 161 | a2d | ⊢ ( 𝑑  ∈  ℕ0  →  ( ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑑 ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑑  +  1 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) ) | 
						
							| 163 | 23 28 33 38 70 162 | nn0ind | ⊢ ( ( deg ‘ 𝐹 )  ∈  ℕ0  →  ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 164 | 18 163 | mpcom | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑘 )  ·  ( ( 𝐺 ‘ 𝑧 ) ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 165 | 16 164 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) |