Step |
Hyp |
Ref |
Expression |
1 |
|
exp0 |
⊢ ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 0 ) = 1 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 0 ) = 1 ) |
3 |
2
|
oveq2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 · ( 𝑧 ↑ 0 ) ) = ( 𝐴 · 1 ) ) |
4 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
6 |
5
|
mulid1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 · 1 ) = 𝐴 ) |
7 |
3 6
|
eqtrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 · ( 𝑧 ↑ 0 ) ) = 𝐴 ) |
8 |
7
|
mpteq2dva |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) = ( 𝑧 ∈ ℂ ↦ 𝐴 ) ) |
9 |
|
fconstmpt |
⊢ ( ℂ × { 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ 𝐴 ) |
10 |
8 9
|
eqtr4di |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) = ( ℂ × { 𝐴 } ) ) |
11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
12 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) |
13 |
12
|
ply1term |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 0 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
14 |
11 13
|
mp3an3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 0 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
15 |
10 14
|
eqeltrrd |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ 𝑆 ) ) |