Description: Lemma for plydivalg . (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plydiv.pl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
plydiv.tm | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | ||
plydiv.rc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) | ||
plydiv.m1 | ⊢ ( 𝜑 → - 1 ∈ 𝑆 ) | ||
Assertion | plydivlem1 | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
2 | plydiv.tm | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | |
3 | plydiv.rc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) | |
4 | plydiv.m1 | ⊢ ( 𝜑 → - 1 ∈ 𝑆 ) | |
5 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
6 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
7 | 2 4 4 | caovcld | ⊢ ( 𝜑 → ( - 1 · - 1 ) ∈ 𝑆 ) |
8 | 6 7 | eqeltrrid | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
9 | 1 8 4 | caovcld | ⊢ ( 𝜑 → ( 1 + - 1 ) ∈ 𝑆 ) |
10 | 5 9 | eqeltrrid | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) |